
Robust Object Tracking with
Online Multiple Instance Learning

Boris Babenko, Student Member, IEEE, Ming-Hsuan Yang, Senior Member, IEEE
and Serge Belongie, Member, IEEE

Abstract

In this paper we address the problem of tracking an object in a video given its location in the first frame and no other
information. Recently, a class of tracking techniques called “tracking by detection” has been shown to give promising results
at real-time speeds. These methods train a discriminative classifier in an online manner to separate the object from the
background. This classifier bootstraps itself by using the current tracker state to extract positive and negative examples
from the current frame. Slight inaccuracies in the tracker can therefore lead to incorrectly labeled training examples, which
degrade the classifier and can cause drift. In this paper we show that using Multiple Instance Learning (MIL), instead
of traditional supervised learning, avoids these problems and can therefore lead to a more robust tracker with fewer
parameter tweaks. We propose a novel online MIL algorithm for object tracking that achieves superior results with real-
time performance. We present thorough experimental results (both qualitative and quantitative) on a number of challenging
video clips.

Index Terms

Visual Tracking, Multiple Instance Learning, Online Boosting

F

• B. Babenko and S. Belongie are with the Department of Computer Science and Engineering, University of California, San Diego.

• M.-H. Yang is with the Department of Computer Science, University of California, Merced.

VISUAL TRACKING WITH ONLINE MULTIPLE INSTANCE LEARNING 1

Robust Object Tracking with
Online Multiple Instance Learning

1 INTRODUCTION

Object tracking is a well studied problem in computer
vision and has many practical applications. The problem
and its difficulty depend on several factors, such as
the amount of prior knowledge about the target object
and the number and type of parameters being tracked
(e.g. location, scale, detailed contour). Although there
has been some success with building trackers for spe-
cific object classes (e.g. faces [1], humans [2], mice [3],
rigid objects [4]), tracking generic objects has remained
challenging because an object can drastically change
appearance when deforming, rotating out of plane, or
when the illumination of the scene changes.

A typical tracking system consists of three compo-
nents: (1) an appearance model, which can evaluate the
likelihood that the object of interest is at some particular
location; (2) a motion model, which relates the locations
of the object over time; and (3) a search strategy for
finding finding the most likely location in the current
frame. The contributions of this paper deal with the first
of these three components; we refer the reader to [5] for
a thorough review of the other components. Although
many tracking methods employ static appearance mod-
els that are either defined manually or trained using only
the first frame [2], [4], [6], [7], [8], [9], these methods
are often unable to cope with significant appearance
changes. These challenges are particularly difficult when
there is limited a priori knowledge about the object
of interest. In this scenario, it has been shown that an
adaptive appearance model, which evolves during the
tracking process as the appearance of the object changes,
is the key to good performance [10], [11], [12]. Training
adaptive appearance models, however, is itself a difficult
task with many questions yet to be answered. Such mod-
els often involve many parameters that must be tuned
to get good performance (e.g. “forgetting factors” that
control how fast the appearance model can change), and
can suffer from drift problems when an object undergoes
partial occlusion.

In this paper we focus on the problem of tracking an
arbitrary object with no prior knowledge other than its
location in the first video frame (sometimes referred to
as “model-free” tracking). Our goal is to develop a more
robust way of updating an adaptive appearance model;
we would like our system to be able to handle partial
occlusions without significant drift, and for it to work
well with minimal parameter tuning. To do this, we turn
to a discriminative learning paradigm called Multiple
Instance Learning (MIL) [13] that can handle ambiguities

(A) (B) (C)

Classifier Classifier MILClassifier Classifier Classifier

Fig. 1. Updating a discriminative appearance model: (A) Using
a single positive image patch to update a traditional discriminative
classifier. The positive image patch chosen does not capture the object
perfectly. (B) Using several positive image patches to update a traditional
discriminative classifier. This can make it difficult for the classifier to
learn a tight decision boundary. (C) Using one positive bag consisting
of several image patches to update a MIL classifier. See Section 4 for
empirical results of these three strategies.

in the training data. This technique has found recent
success in other computer vision areas, such as object
detection [14], [15] and object recognition [16], [17], [18].

We will focus on the problem of tracking the location
and scale of a single object, using a rectangular bounding
box to approximate these parameters. It is plausible
that the ideas presented here can be applied to other
types of tracking problems like tracking multiple objects
(e.g. [19]), tracking contours (e.g. [20], [21]), or tracking
deformable objects (e.g. [22]), but this is outside the
scope of our work.

The remainder of this paper is organized as follows: in
Section 2 we review the current state of the art in adap-
tive appearance models; in Section 3 we introduce our
tracking algorithm; in Section 4 we present qualitative
and quantitative results of our tracker on a number of
challenging video clips. We conclude in Section 5.

2 ADAPTIVE APPEARANCE MODELS

An important choice in the design of appearance models
is whether to model only the object [12], [23], or both
the object and the background [24], [25], [26], [27], [28],
[29], [30]. Many of the latter approaches have shown that
training a model to separate the object from the back-
ground via a discriminative classifier can often achieve
superior results. These methods are closely related to ob-
ject detection – an area that has seen great progress in the

VISUAL TRACKING WITH ONLINE MULTIPLE INSTANCE LEARNING 2

last decade. In fact, some of these methods are referred
to as “tracking-by-detection” or “tracking by repeated
recognition” [31]. In particular, the recent advances in
face detection [32] have inspired some successful real-
time tracking algorithms [25], [26].

A major challenge that is often not discussed in the lit-
erature is how to choose positive and negative examples
when updating the adaptive appearance model. Most
commonly this is done by taking the current tracker
location as one positive example, and sampling the
neighborhood around the tracker location for negatives.
If the tracker location is not precise, however, the ap-
pearance model ends up getting updated with a sub-
optimal positive example. Over time this can degrade
the model, and can cause drift. On the other hand,
if multiple positive examples are used (taken from a
small neighborhood around the current tracker location),
the model can become confused and its discriminative
power can suffer (cf. Fig. 1 (A-B)). Alternatively, Grabner
et al. [33] recently proposed a semi-supervised approach
where labeled examples come from the first frame only,
and subsequent training examples are left unlabeled.
This method is particularly well suited for scenarios
where the object leaves the field of view completely,
but it throws away a lot of useful information by not
taking advantage of the problem domain (e.g., it is safe
to assume small interframe motion).

Object detection faces issues similar to those described
above, in that it is difficult for a human labeler to be
consistent with respect to how the positive examples
are cropped. In fact, Viola et al. [14] argue that object
detection has inherent ambiguities that cause difficulty
for traditional supervised learning methods. For this
reason they suggest the use of a Multiple Instance
Learning (MIL) [13] approach for object detection. We
give a more formal definition of MIL in Section 3.2, but
the basic idea of this learning paradigm is that during
training, examples are presented in sets (often called
“bags”), and labels are provided for the bags rather
than individual instances. If a bag is labeled positive
it is assumed to contain at least one positive instance,
otherwise the bag is negative. For example, in the context
of object detection, a positive bag could contain a few
possible bounding boxes around each labeled object (e.g.
a human labeler clicks on the center of the object, and the
algorithm crops several rectangles around that point).
Therefore, the ambiguity is passed on to the learning
algorithm, which now has to figure out which instance
in each positive bag is the most “correct”. Although one
could argue that this learning problem is more difficult
in the sense that less information is provided to the
learner, in some ways it is actually easier because the
learner is allowed some flexibility in finding a decision
boundary. Viola et al. present convincing results showing
that a face detector trained with weaker labeling (just the
center of the face) and a MIL algorithm outperforms a
state of the art supervised algorithm trained with explicit
bounding boxes.

Frame (t) Frame (t+1) Frame (t+1)Probability Map

X X

old location

new location

Step 1: Update
Step 2: Apply Appearance Step 3: Update

MODELMODEL

Step 1: Update
Appearance Model

Model inside of window
around old location

p p
Tracker State

Fig. 2. Tracking by detection with a greedy motion model: an
illustration of how most tracking by detection systems work.

Algorithm 1 MILtrack
Input: Video frame number k

1: Crop out a set of image patches, Xs = {x : ||`(x) −
`∗t−1|| < s} and compute feature vectors.

2: Use MIL classifier to estimate p(y = 1|x) for x ∈ Xs.
3: Update tracker location `∗t = `

(
argmaxx∈Xs p(y|x)

)
.

4: Crop out two sets of image patches Xr = {x : ||`(x)−
`∗t || < r} and Xr,β = {x : r < ||`(x)− `∗t || < β}.

5: Update MIL appearance model with one positive bag
Xr and |Xr,β | negative bags, each containing a single
image patch from the set Xr,β .

In this paper we make an analogous argument to that
of Viola et al. [14], and propose to use a MIL based
appearance model for object tracking (cf. Fig. 1(C)). In
fact, in the object tracking domain there is even more
ambiguity than in object detection because the tracker
has no human input and has to bootstrap itself. There-
fore, we expect the benefits of a MIL approach to be even
more significant than in the object detection problem.
In order to incorporate MIL into a tracker, an online
MIL algorithm is required. The algorithm we propose
(to our knowledge this is the first online MIL algorithm
in the literature) is based on boosting and is related
to the MILBoost algorithm [14] as well as the Online
AdaBoost algorithm [34]. We present empirical results
on challenging video sequences, which show that using
an online MIL based appearance model can lead to more
robust and stable tracking than existing methods in the
literature.

3 TRACKING WITH ONLINE MIL

In this section we introduce our tracking algorithm,
MILTrack, which uses a MIL based appearance model.
We begin with an overview of our tracking system which
includes a description of the motion model we use.
Next we review the MIL problem and briefly describe
the MILBoost algorithm [14]. We then review online
boosting [25], [34] and present a novel boosting based
algorithm for online MIL. Finally, we review various
implementation details.

VISUAL TRACKING WITH ONLINE MULTIPLE INSTANCE LEARNING 3

3.1 System Overview and Motion Model
The basic flow of the tracking system we implemented
in this work is illustrated in Fig. 2 and summarized in
Algorithm 1. Our image representation consists of a set
of Haar-like features that are computed for each image
patch [32], [35]; this is discussed in more detail in Section
3.6. The appearance model is composed of a discrimina-
tive classifier which is able to return p(y = 1|x) (we will
use p(y|x) as shorthand), where x is an image patch (or
the representation of an image patch in feature space)
and y is a binary variable indicating the presence of
the object of interest in that image patch. At every time
step t, our tracker maintains the object location `∗t . Let
`(x) denote the location of image patch x (for now let’s
assume this consists of only the (x, y) coordinates of the
patch center, and that scale is fixed; below we consider
tracking scale as well). For each new frame we crop out
a set of image patches Xs = {x : ||`(x)− `∗t−1|| < s} that
are within some search radius s of the current tracker
location, and compute p(y|x) for all x ∈ Xs. We then
use a greedy strategy to update the tracker location:

`∗t = `
(
argmax
x∈Xs

p(y|x)
)

(1)

In other words, we do not maintain a distribution of the
target’s location at every frame, and our motion model
is such that the location of the tracker at time t is equally
likely to appear within a radius s of the tracker location
at time (t− 1):

p(`∗t |`∗t−1) ∝
{

1 if ||`∗t − `∗t−1|| < s
0 otherwise (2)

This could be extended with something more sophisti-
cated, such as a particle filter, as is done in [12], [29],
[36]; however, we again emphasize that our focus is on
the appearance model.

Once the tracker location is updated, we proceed to
update the appearance model. We crop out a set of
patches Xr = {x : ||`(x) − `∗t || < r}, where r < s
is a scalar radius (measured in pixels), and label this
bag positive (recall that in MIL we train the algorithm
with labeled bags). In contrast, if a standard learning
algorithm were used, there would be two options: set
r = 1 and use this as a single positive instance, or
set r > 1 and label all these instances positive. For
negatives we crop out patches from an annular region
Xr,β = {x : r < ||`(x) − `∗t || < β}, where r is same as
before, and β is another scalar. Since this generates a
potentially large set, we then take a random subset of
these image patches and label them negative. We place
each negative example into its own negative bag, though
placing them all into one negative bag yields the same
result (this is discussed in more detail in Section 3.2).

Incorporating scale tracking into this system is
straightforward. First, we define an extra parameter λ
to be the scale space step size. When searching for the
location of the object in a new frame, we crop out image
patches from the image at the current scale, `st , as well

as one scale step larger and smaller, `st ±λ; once we find
the location with the maximum response, we update the
current state (both position and scale) accordingly. When
updating the appearance model, we have the option of
cropping training image patches only from the current
scale, or from the neighboring scales as well; in our
current implementation we do the former.

It is important to note that tracking in scale-space
is a double-edged sword. In some ways the problem
becomes more difficult because the parameter space
becomes larger, and consequently there is more room
for error. However, tracking this additional parameter
may mean that the image patches we crop out are better
aligned, making it easier for our classifier to learn the
correct appearance. In our experiments we have noticed
both behaviors – sometimes adding scale tracking helps,
and other times it hurts performance.

Details on how all of the above parameters were set
are in Section 4, although we use the same parameters
throughout all the experiments. We continue with a more
detailed review of MIL.

3.2 Multiple Instance Learning
Traditional discriminative learning algorithms for train-
ing a binary classifier that estimates p(y|x) require
a training data set of the form {(x1, y1), . . . , (xn, yn)}
where xi is an instance (in our case a feature vector
computed for an image patch), and yi ∈ {0, 1} is a
binary label. In Multiple Instance Learning training data
has the form {(X1, y1), . . . , (Xn, yn)} where a bag Xi =
{xi1, . . . , xim} and yi is a bag label. The bag labels are
defined as:

yi = max
j

(yij) (3)

where yij are the instance labels, which are not known
during training. In other words, a bag is considered
positive if it contains at least one positive instance.
Numerous algorithms have been proposed for solving
the MIL problem [13], [14], [16]. The algorithm that
is most closely related to our work is the MILBoost
algorithm proposed by Viola et al. in [14]. MILBoost
uses the the gradient boosting framework [37] to train a
boosting classifier that maximizes the log likelihood of
bags:

L =
∑
i

(
log p(yi|Xi)

)
(4)

Notice that the likelihood is defined over bags and not
instances, because instance labels are unknown during
training, and yet the goal is to train an instance classi-
fier that estimates p(y|x). We therefore need to express
p(yi|Xi), the probability of a bag being positive, in terms
of its instances. In [14] the Noisy-OR (NOR) model is
adopted for doing this:

p(yi|Xi) = 1−
∏
j

(
1− p(yi|xij)

)
(5)

VISUAL TRACKING WITH ONLINE MULTIPLE INSTANCE LEARNING 4

Frame 1
(Labeled)

Clf Initialize Frame 2

Ftr Pool:

Clf Update

Ftr Pool: F 3

B Initial Positive

Ftr Pool:
Apply Clf

Extracted Positive

1 2 3

Ftr Pool:
1 2 3

Frame 3

O
A
B

L

Example

Initial Positive

OAB Clf = { } Example

Extracted Positive
()

OAB Clf = { }
M
IL

t a os t e
Example

MIL Clf = { }
Examples (a Bag)

{ }
MIL Clf = { }

Clf = Classifier Ftr = Feature OAB = Online AdaBoost MIL= Online Multiple Instance Learning

Fig. 3. An illustration of how using MIL for tracking can deal with occlusions. Frame 1: Consider a simple case where the classifier is allowed
to only pick one feature from the pool. The first frame is labeled. One positive patch and several negative patches (not shown) are extracted, and
the classifiers are initialized. Both OAB and MIL result in identical classifiers - both choose feature #1 because it responds well with the mouth of
the face (feature #3 would have performed well also, but suppose #1 is slightly better). Frame 2: In the second frame there is some occlusion. In
particular, the mouth is occluded, and the classifier trained in the previous step does not perform well. Thus, the most probable image patch is no
longer centered on the object. OAB uses just this patch to update; MIL uses this patch along with its neighbors. Note that MIL includes the correct
image patch in the positive bag. Frame 3: When updating, the classifiers try to pick the feature that best discriminates the current example as well
the ones previously seen. OAB has trouble with this because the current and previous positive examples are too different. It chooses a bad feature.
MIL is able to pick the feature that discriminates the eyes of the face, because one of the examples in the positive bag was correctly cropped (even
though the mouth was occluded). MIL is therefore able to successfully classify future frames. Note that if we assign positive labels to the image
patches in the MIL bag and use these to train OAB, it would still have trouble picking a good feature.

although other models could be swapped in (e.g. [38]).
The equation above has the desired property that if one
of the instances in a bag has a high probability, the bag
probability will be high as well. As mentioned in [14],
with this formulation, the likelihood is the same whether
we put all the negative instances in one bag, or if we put
each in its own bag. Intuitively this makes sense because
no matter how we arrange things, we know that every
instance in a negative bag is negative. We refer the reader
to [14] for further details on MILBoost. Finally, we note
that MILBoost is a batch algorithm (meaning it needs the
entire training data set at once) and cannot be trained in
an online manner as we need in our tracking application.
Nevertheless, we adopt the loss function in Equation 4
and the bag probability model in Equation 5 when we
develop our online MIL algorithm in Section 3.4.

3.3 Online Boosting
Our algorithm for online MIL is based on the boosting
framework [39] and is related to the work on Online
AdaBoost [34] and its adaptation in [25]. The goal of
boosting is to combine many weak classifiers h(x) (usu-
ally decision stumps) into an additive strong classifier:

H(x) =

K∑
k=1

αkhk(x) (6)

where αk are scalar weights. There have been many
boosting algorithms proposed to learn this model in
batch mode [39], [40]; typically this is done in a greedy
manner where the weak classifiers are trained sequen-
tially. After each weak classifier is trained, the training
examples are re-weighted such that examples that were
previously misclassified receive more weight. If each

weak classifier is a decision stump, then it chooses one
feature that has the most discriminative power for the
entire weighted training set. In this case boosting can
be viewed as performing feature selection, choosing a
total of K features, which is generally much smaller
than the size of the entire feature pool. This has proven
particularly useful in computer vision because it creates
classifiers that are efficient at run time [32].

In [34], Oza develops an online variant of the popular
AdaBoost algorithm [39], which minimizes the exponen-
tial loss function. This variant requires that all h can be
trained in an online manner. The basic flow of Oza’s
algorithm is as follows: for an incoming example x, each
hk is updated sequentially and the weight of example
x is adjusted after each update. Since the formulas for
the example weights and classifier weights in AdaBoost
depend only on the error of the weak classifiers, Oza
proposes to keep a running average of the error of each
hk, which allows the algorithm to estimate both the
example weight and the classifier weights in an online
manner.

In Oza’s framework if every h is restricted to be a
decision stump, the algorithm has no way of choos-
ing the most discriminative feature because the entire
training set is never available at one time. Therefore,
the features for each hk must be picked a priori. This
is a potential problem for computer vision applications,
since they often rely on the feature selection property
of boosting. Grabner et al. [25] proposed an extension
of Oza’s algorithm which performs feature selection by
maintaining a pool of M > K candidate weak stump
classifiers h. When a new example is passed in, all of the
candidate weak classifiers are updated in parallel. Then,
the algorithm sequentially chooses K weak classifiers

VISUAL TRACKING WITH ONLINE MULTIPLE INSTANCE LEARNING 5

Algorithm 2 Online MILBoost (OMB)

Input: Dataset {Xi, yi}Ni=1, where Xi = {xi1, xi2, . . .}, yi ∈
{0, 1}

1: Update all M weak classifiers in the pool with data
{xij , yi}

2: Initialize Hij = 0 for all i, j
3: for k = 1 to K do
4: for m = 1 to M do
5: pmij = σ

(
Hij + hm(xij)

)
6: pmi = 1−

∏
j

(
1− pmij

)
7: Lm =

∑
i

(
yi log(p

m
i) + (1− yi) log(1− pmi)

)
8: end for
9: m∗ = argmaxm Lm

10: hk(x)← hm∗(x)
11: Hij = Hij + hk(x)
12: end for
Output: Classifier H(x) =

∑
k hk(x), where p(y|x) =

σ
(
H(x)

)

from this pool by keeping running averages of errors for
each, as in [34], and updates the weights of h accord-
ingly. We employ a similar feature selection technique
in our Online MIL algorithm, although the criteria for
choosing weak classifiers is different.

3.4 Online Multiple Instance Boosting

The algorithms in [34] and [25] rely on the special prop-
erties of the exponential loss function of AdaBoost, and
therefore cannot be readily adapted to the MIL problem.
We now present our novel online boosting algorithm for
MIL. As in [40], we take a statistical view of boosting,
where the algorithm is trying to optimize a specific
objective function J . In this view, the weak classifiers are
chosen sequentially to optimize the following criteria:

(hk, αk) = argmax
h∈H,α

J(Hk−1 + αh) (7)

where Hk−1 is the strong classifier made up of the
first (k − 1) weak classifiers, and H is the set of all
possible weak classifiers. In batch boosting algorithms,
the objective function J is computed over the entire
training data set.

In our case, for the current video frame we are given
a training data set {(X1, y1), (X2, y2) . . .}, where Xi =
{xi1, xi2 . . .}. We would like to update our classifier to
maximize log likelihood of this data (Equation 4). We
model the instance probability as

p(y|x) = σ
(
H(x)

)
(8)

where σ(x) = 1
1+e−x is the sigmoid function; the bag

probabilities p(y|X) are modeled using the NOR model
in Equation 5. To simplify the problem, we absorb the
scalar weights αt into the weak classifiers, by allowing
them to return real values rather than binary.

At all times our algorithm maintains a pool of M > K
candidate weak stump classifiers h. To update the clas-
sifier, we first update all weak classifiers in parallel,
similar to [25]. Note that although instances are in bags,
the weak classifiers in a MIL algorithm are instance
classifiers, and therefore require instance labels yij . Since
these are unavailable, we pass in the bag label yi for all
instances xij to the weak training procedure. We then
choose K weak classifiers h from the candidate pool
sequentially, by maximizing the log likelihood of bags:

hk = argmax
h∈{h1,...,hM}

L(Hk−1 + h) (9)

See Algorithm 2 for the pseudo-code of Online MILBoost
and Fig. 3 for an illustration of tracking with this algo-
rithm.

3.5 Discussion
There are a couple important issues to point out about
this algorithm. First, we acknowledge the fact that train-
ing the weak classifiers with positive labels for all in-
stances in the positive bags is sub-optimal because some
of the instances in the positive bags may actually not
be “correct”. The algorithm makes up for this when
it is choosing the weak classifiers h based on the bag
likelihood loss function. We have also experimented
using online GradientBoost [41] to compute weights
(via the gradient of the loss function) for all instances,
but found this to make little difference in accuracy
while making the system slower. Second, if we compare
Equations 7 and 9 we see that the latter has a much
more restricted choice of weak classifiers. This approx-
imation does not seem to degrade the performance of
the classifier in practice, as noted in [42]. Finally, we
note that the likelihood being optimized in Equation 9
is computed only on the current examples. Thus, it has
the potential of overfitting to current examples, and not
retaining information about previously seen data. This
is averted by using online weak classifiers that do retain
information about previously seen data, which balances
out the overall algorithm between fitting the current data
and retaining history.

3.6 Implementation Details

3.6.1 Weak Classifiers
Recall that we require weak classifiers h that can be
updated online. In our system each weak classifier hk is
composed of a Haar-like feature fk and four parameters
(µ1, σ1, µ0, σ0) that are estimated online. The classifiers
return the log odds ratio:

hk(x) = log

[
pt
(
y = 1|fk(x)

)
pt
(
y = 0|fk(x)

)] (10)

where pt
(
ft(x)|y = 1

)
∼ N (µ1, σ1) and similarly for

y = 0. We let p(y = 1) = p(y = 0) and use Bayes
rule to compute the above equation. When the weak

VISUAL TRACKING WITH ONLINE MULTIPLE INSTANCE LEARNING 6

classifier receives new data {(x1, y1), . . . , (xn, yn)}we use
the following update rules:

µ1 ← γµ1 + (1− γ) 1
n

∑
i|yi=1

fk(xi)

σ1 ← γσ1 + (1− γ)

√√√√ 1

n

∑
i|yi=1

(
fk(xi)− µ1

)2
where 0 < γ < 1 is a learning rate parameter. The update
rules for µ0 and σ0 are similarly defined.

3.6.2 Image Features
We represent each image patch as a vector of Haar-like
features [32], which are randomly generated, similar to
[35]. Each feature consists of 2 to 4 rectangles, and each
rectangle has a real valued weight. The feature value is
then a weighted sum of the pixels in all the rectangles.
These features can be computed efficiently using the
integral image trick described in [32].

4 EXPERIMENTS

We tested our MILTrack system on several challenging
video sequences, some of which are publicly available.
For comparison, we implemented a tracker based on
the Online AdaBoost (OAB) algorithm described in [25].
We plugged this learning algorithm into our system,
and used the same features and motion model as for
MILTrack (See Section 3.1). We acknowledge the fact
that our implementation of the OAB tracker achieves
worse performance than is reported in [25]; this could
be because we are using simpler features, or because
our parameters were not tuned per video sequence.
However, our study is still valid for comparison be-
cause only the learning algorithm changes between our
implementation of the OAB tracker and MILTrack, and
everything else is kept constant. This allows us to isolate
the appearance model to make sure that it is the cause
of the performance difference.

One of the goals of this work is to demonstrate that
using MIL results in a more robust and stable tracker.
For this reason all algorithm parameters were fixed for
all the experiments. This holds for all algorithms we
tested. For MILTrack and OAB the parameters were set
as follows. The search radius s is set to 35 pixels. For
MILTrack we sample positives in each frame using a
radius r = 4 (we found that the algorithm is fairly robust
for a range of values). This generates a total of 45 image
patches comprising one positive bag (for clarity, we call
this MILTrack(45)). For the OAB tracker we tried two
variations. In the first variation we set r = 1 generat-
ing only one positive example per frame (we call this
OAB(1)); in the second variation we set r = 4 as we do
in MILTrack (although in this case each of the 45 image
patches is labeled positive); we call this OAB(45). The
reason we experimented with these two versions was to
show that the superior performance of MILTrack is not

simply due to the fact that we extract multiple positive
examples per frame. In fact, as we will see shortly, when
multiple positive examples are used for the OAB tracker,
its performance degrades1 (cf. Table 1 and Fig. 4). The
scalar β for sampling negative examples was set to 50,
and we randomly sample 65 negative image patches
from the set Xr,β (though during initialization with the
first frame we sample 1000 patches). The learning rate γ
for the weak classifiers is set to 0.85. Finally, the number
of candidate weak classifiers M was set to 250, and the
number of chosen weak classifiers K was set to 50.

To gauge absolute performance we also compare our
results to three other algorithms, using code provided by
the respective authors. The first of these is the SemiBoost
tracker [33]2; as mentioned earlier, this method uses label
information from the first frame only, and then updates
the appearance model via online semi-supervised learn-
ing in subsequent frames. This makes it particularly
robust to scenarios where the object leaves the scene
completely. However, the model relies strongly on the
prior classifier (trained using the first frame). We found
that on clips exhibiting significant appearance changes
this algorithm often lost the object. The second algorithm
is FragTrack [9]3. This algorithm uses a static appearance
model based on integral histograms, which have been
shown to be very efficient. The appearance model is
part based, which makes it robust to occlusions. For both
algorithms, we use the default parameters provided by
the authors for all of our experiments. For experiments
where we track both location and scale we compare to
IVT [12], setting the parameters such that only location
and scale are tracked (rather than a full set of affine
parameters). For the trackers than involve randomness,
all results are averaged over 5 runs.

The system was implemented in C++
(code and data available on our project
website: http://vision.ucsd.edu/project/
tracking-online-multiple-instance-learning), and runs at
about 25 frames per second (FPS).

4.1 Evaluation Methodology
Evaluating a tracking algorithm is itself a challenge.
Qualitative comparison on test video clips is most com-
mon; quantitative comparison typically involves plotting
the center location error versus frame number. Since
these plots can be difficult to interpret, it is useful to
summarize performance by computing the mean error
over all the frames of the video. However, this value
sometimes fails to correctly capture tracker performance.
For example, if a tracker tracks an object closely for

1. We also experimented with the LogitBoost loss function (as in [41],
which penalizes noisy examples less harshly, and although it worked
better than OAB, it did not outperform MILTrack. We omit the detailed
results due to space constraints.

2. Code available at http://www.vision.ee.ethz.ch/
boostingTrackers/download.htm.

3. Code available at http://www.cs.technion.ac.il/∼amita/
fragtrack/fragtrack.htm.

VISUAL TRACKING WITH ONLINE MULTIPLE INSTANCE LEARNING 7

200 400 600 800 1000 1200
0

20

40

60

80

100

120

140

160

Sylvester

Frame #

C
e

n
te

r
L

o
c
a

ti
o

n
 E

rr
o

r
(p

ix
e

l)

OAB(1) [25]

OAB(45) [79]

SemiBoost [16]

Frag [11]

MILTrack(45) [11]

100 200 300 400
0

50

100

150

David Indoor

Frame #

C
e

n
te

r
L

o
c
a

ti
o

n
 E

rr
o

r
(p

ix
e

l)

OAB(1) [49]

OAB(45) [72]

SemiBoost [39]

Frag [46]

MILTrack(45) [23]

50 100 150 200 250
0

20

40

60

80

100

Cola Can

Frame #

C
e

n
te

r
L

o
c
a

ti
o

n
 E

rr
o

r
(p

ix
e

l)

OAB(1) [25]

OAB(45) [57]

SemiBoost [13]

Frag [63]

MILTrack(45) [20]

100 200 300 400 500 600 700 800
0

20

40

60

80

100

120

Occluded Face

Frame #

C
e

n
te

r
L

o
c
a

ti
o

n
 E

rr
o

r
(p

ix
e

l)

OAB(1) [43]

OAB(45) [105]

SemiBoost [7]

Frag [6]

MILTrack(45) [27]

100 200 300 400 500 600 700 800
0

50

100

150

Occluded Face 2

Frame #
C

e
n

te
r

L
o

c
a

ti
o

n
 E

rr
o

r
(p

ix
e

l)

OAB(1) [21]

OAB(45) [93]

SemiBoost [23]

Frag [45]

MILTrack(45) [20]

50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

Surfer

Frame #

C
e

n
te

r
L

o
c
a

ti
o

n
 E

rr
o

r
(p

ix
e

l)

OAB(1) [23]

OAB(45) [43]

SemiBoost [9]

Frag [139]

MILTrack(45) [11]

50 100 150 200 250 300 350
0

20

40

60

80

100

Tiger 1

Frame #

C
e
n
te

r
L
o
c
a
ti
o
n
 E

rr
o
r

(p
ix

e
l)

OAB(1) [35]

OAB(45) [57]

SemiBoost [42]

Frag [39]

MILTrack(45) [16]

50 100 150 200 250 300 350
0

20

40

60

80

100

120

Tiger 2

Frame #

C
e

n
te

r
L

o
c
a

ti
o

n
 E

rr
o

r
(p

ix
e

l)

OAB(1) [33]

OAB(45) [33]

SemiBoost [61]

Frag [37]

MILTrack(45) [18]

50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

Coupon Book

Frame #

C
e

n
te

r
L

o
c
a

ti
o

n
 E

rr
o

r
(p

ix
e

l)

OAB(1) [25]

OAB(45) [58]

SemiBoost [67]

Frag [56]

MILTrack(45) [15]

Fig. 4. Tracking Object Location: Location Error Plots. See text for details.

Video Clip OAB(1) OAB(45) SemiBoost Frag MILTrack(45)
Sylvester 25 79 16 11 11

David Indoor 49 72 39 46 23
Cola Can 25 57 13 63 20

Occluded Face 43 105 7 6 27
Occluded Face 2 21 93 23 45 20

Surfer 23 43 9 139 11
Tiger 1 35 57 42 39 16
Tiger 2 33 33 61 37 18

Coupon Book 25 58 67 56 15

TABLE 1
Tracking Object Location: average center location errors (pixels). Bold green font indicates best performance, red italics font indicates second

best.

most of the video, but loses track completely on the last
several frames, the mean location error may be higher
than a tracker that sticks with the object, though not as
precisely. The preference between these two behaviors
inevitably depends on the final application.

For the above reasons, in addition to presenting screen
shots and location error analysis, we include precision
plots, similar to the analysis in [43], and suggested in
[5]. These plots show the percentage of frames for which
the estimated object location was within some threshold
distance of the ground truth. To summarize these plots,
we chose the threshold 20 and report the precision at
this point in the curve (e.g. this is the percent of frames
for which the tracker was less than 20 pixels off from
the ground truth); this threshold roughly corresponds
to at least a 50% overlap between the tracker bounding
box and the ground truth. Note that we could have

used the PASCAL [44] overlap criteria throughout our
evaluation; however, this would require us to label full
bounding boxes (which is more time consuming), and
would make it difficult to compare trackers that do and
do not return estimated scale. Finally, note that when
multiple trails were done, we computed error for each
trial and averaged the errors rather than averaging the
tracker outputs and computing error.

4.2 Tracking Object Location

We perform our experiments on 3 publicly available
video sequences, as well as 6 of our own. For all se-
quences we labeled the ground truth center of the object
for every 5 frames, and interpolated the location in the
other frames (with the exception of the “Occluded Face”
sequence, for which the authors of [9] provided ground

VISUAL TRACKING WITH ONLINE MULTIPLE INSTANCE LEARNING 8

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Sylvester

Threshold

P
re

c
is

io
n

OAB(1) [0.64]

OAB(45) [0.04]

SemiBoost [0.69]

Frag [0.86]

MILTrack(45) [0.90]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

David Indoor

Threshold

P
re

c
is

io
n

OAB(1) [0.16]

OAB(45) [0.08]

SemiBoost [0.46]

Frag [0.45]

MILTrack(45) [0.52]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Cola Can

Threshold

P
re

c
is

io
n

OAB(1) [0.45]

OAB(45) [0.16]

SemiBoost [0.78]

Frag [0.14]

MILTrack(45) [0.55]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Occluded Face

Threshold

P
re

c
is

io
n

OAB(1) [0.22]

OAB(45) [0.02]

SemiBoost [0.97]

Frag [0.95]

MILTrack(45) [0.43]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Occluded Face 2

Threshold
P

re
c
is

io
n

OAB(1) [0.61]

OAB(45) [0.03]

SemiBoost [0.60]

Frag [0.44]

MILTrack(45) [0.60]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Surfer

Threshold

P
re

c
is

io
n

OAB(1) [0.51]

OAB(45) [0.33]

SemiBoost [0.96]

Frag [0.28]

MILTrack(45) [0.93]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Tiger 1

Threshold

P
re

c
is

io
n

OAB(1) [0.48]

OAB(45) [0.22]

SemiBoost [0.44]

Frag [0.28]

MILTrack(45) [0.81]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Tiger 2

Threshold

P
re

c
is

io
n

OAB(1) [0.51]

OAB(45) [0.40]

SemiBoost [0.30]

Frag [0.22]

MILTrack(45) [0.83]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Coupon Book

Threshold

P
re

c
is

io
n

OAB(1) [0.67]

OAB(45) [0.15]

SemiBoost [0.37]

Frag [0.41]

MILTrack(45) [0.69]

Fig. 5. Tracking Object Location: Precision plots. See text for details.

Video Clip OAB(1) OAB(45) SemiBoost Frag MILTrack(45)
Sylvester 0.64 0.04 0.69 0.86 0.90

David Indoor 0.16 0.08 0.46 0.45 0.52
Cola Can 0.45 0.16 0.78 0.14 0.55

Occluded Face 0.22 0.02 0.97 0.95 0.43
Occluded Face 2 0.61 0.03 0.60 0.44 0.60

Surfer 0.51 0.33 0.96 0.28 0.93
Tiger 1 0.48 0.22 0.44 0.28 0.81
Tiger 2 0.51 0.40 0.30 0.22 0.83

Coupon Book 0.67 0.15 0.37 0.41 0.69

TABLE 2
Tracking Object Location: precision at a fixed threshold of 20. Bold green font indicates best performance, red italics font indicates second best.

truth). All video frames were converted to gray scale
prior to processing.

The quantitative results are summarized in Tables 1
and 2, and plots are shown in Fig. 4 and 5; Fig. 6,7 and
8 show screen captures for some of the clips. Below is a
more detailed discussion of the video sequences.

4.2.1 Sylvester & David Indoor
These two video sequences have been used in several
recent tracking papers [12], [24], [25], and they present
challenging lighting, scale and pose changes. Our algo-
rithm achieves the best performance (tying FragTrack on
the “Sylvester” sequence).

4.2.2 Occluded Face, Occluded Face 2
In the “Occluded Face” sequence, which comes from
the authors of [9], FragTrack performs the best because
it is specifically designed to handle occlusions via a

part-based model. However, on our similar, but more
challenging clip, “Occluded Face 2”, FragTrack performs
poorly because it cannot handle appearance changes
well (e.g. when the subject puts a hat on, or turns
his face). This highlights the advantages of using an
adaptive appearance model.

4.2.3 CokeCan, Surfer

The Coke Can sequence contains a specular object, which
adds some difficulty. The “Surfer” clip was downloaded
from Youtube; this clip would be easier to track if color
information were used4, but since we use grayscale
images for all experiments this clip is fairly challenging.
Both MILTrack and the SemiBoost tracker perform well
on these clips (cf. Fig. 5).

4. It would be straightforward to extend our system to use color –
e.g. compute Haar features over color channels.

VISUAL TRACKING WITH ONLINE MULTIPLE INSTANCE LEARNING 9

(A) Sylvester

(B) David Indoor

(C) Coke Can

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

OAB(1) Frag SemiBoost MILTrack(45)

Fig. 6. Tracking Object Location: screenshots of tracking results, highlighting instances of out-of-plane rotation, occluding clutter, scale and
illumination change. For the sake of clarity we only show three trackers per video clip.

VISUAL TRACKING WITH ONLINE MULTIPLE INSTANCE LEARNING 10

(A) Occluded Face

(B) Occluded Face 2

(C) Surfer

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

OAB(1) Frag SemiBoost MILTrack(45)

Fig. 7. Tracking Object Location: screenshots of tracking results, highlighting instances of out-of-plane rotation, occluding clutter, scale and
illumination change. For the sake of clarity we only show three trackers per video clip.

VISUAL TRACKING WITH ONLINE MULTIPLE INSTANCE LEARNING 11

(A) Tiger 2

(B) Coupon Book

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

OAB(1) Frag SemiBoost MILTrack(45)

Fig. 8. Tracking Object Location: screenshots of tracking results, highlighting instances of out-of-plane rotation, occluding clutter, scale and
illumination change. For the Tiger 2 clip we also include close up shots of the object to highlight the wide range of appearance changes. For the
sake of clarity we only show three trackers per video clip.

4.2.4 Tiger 1, Tiger 2
These sequences exhibit many challenges, and contain
frequent occlusions and fast motion (which causes mo-
tion blur). The two sequences show the toy tiger in many
different poses, and include out of plane rotations (cf.
Fig. 8 (A)). Our algorithm outperforms the others, often
by a large margin.

4.2.5 Coupon Book
This clip illustrates a problem that arises when the
tracker relies too heavily on the first frame. The ap-
pearance of the coupon book is changed after about 50
frames, by folding one of its pages; then an “imposter”
coupon book is introduced to distract the trackers. MIL-
Track successfully tracks the correct coupon book, while
FragTrack and the SemiBoost tracker are confused by the
impostor object.

4.3 Tracking Object Location & Scale
Here we present results for both location and scale
tracking. Scale tracking is independent of the appear-

ance model, so our implementation of scale tracking for
MILTrack is easily carried over to the OAB tracker. Note
that the quantitative results we present are still based
on object center location only; we do not measure error
of scale estimation. This allows us to compare results of
trackers that estimate scale and those with a fixed scale.
Furthermore, gathering ground truth for object center is
less time consuming than for a full bounding box.

4.3.1 David Indoor

This is the same clip that we studied in the previous sec-
tion. Here we see a big advantage of using scale tracking
– MILTrack with scale performs better than MILTrack
without scale, and it performs better than OAB(1) with
scale. However, the IVT tracker achieves the best result
on this video clip. We believe IVT is particularly well
suited to faces since it uses a subspace (PCA) appearance
model. We will see in the next experiments that IVT does
not work well in other scenarios.

VISUAL TRACKING WITH ONLINE MULTIPLE INSTANCE LEARNING 12

100 200 300 400
0

10

20

30

40

David Indoor

Frame #

C
e
n
te

r
L
o
c
a
ti
o
n
 E

rr
o
r

(p
ix

e
l)

OAB
s
(1) [28]

IVT
s
 [5]

MILTrack(45) [23]

MILTrack
s
(45) [20]

50 100 150 200 250 300

20

40

60

80

100

120

140

Snack Bar

Frame #

C
e

n
te

r
L

o
c
a

ti
o

n
 E

rr
o

r
(p

ix
e

l)

OAB
s
(1) [18]

IVT
s
 [30]

MILTrack(45) [12]

MILTrack
s
(45) [9]

100 200 300 400
0

10

20

30

40

50

Tea Box

Frame #

C
e
n
te

r
L
o
c
a
ti
o
n
 E

rr
o
r

(p
ix

e
l)

OAB
s
(1) [17]

IVT
s
 [14]

MILTrack(45) [10]

MILTrack
s
(45) [10]

Fig. 9. Tracking Object Location & Scale: average center location errors. See text for details.

Video Clip OABs(1) IVTs MILTrack(45) MILTracks(45)
David Indoor 28 5 23 20

Snack Bar 18 30 12 9
Tea Box 17 14 10 10

TABLE 3
Tracking Object Location & Scale: location mean error. Bold green font indicates best performance, red italics font indicates second best.

4.3.2 Snack Bar
In this clip the goal is to track an object that changes
in scale and moves against a background that is very
similar in texture. We see that the IVT tracker fails in
this case, when the object is turned upside down. The
IVT tracker uses a generative model, rather than dis-
criminative, so it does not take into account the negative
examples from the image. Because the background is so
similar to the object of interest in this video clip, IVT
ultimately loses the object and snaps to some part of
the background. As before, we see that MILTrack with
scale performs better than MILTrack without scale and
OAB(1) with scale; overall MILTrack achieves the best
performance on this clip.

4.3.3 Tea Box
This clip again shows the shortcomings of IVT – the clip
shows a box of tea which is moved around and rotated
(exposing new faces of the box). IVT fails when these
out of plane rotations take place (see Fig. 10(C), frame
#240 and beyond). Though the center location error is
similar for both version of MILTrack (Fig. 9), we can
see the version that includes scale search results in more
satisfactory results (e.g. frame #134).

5 DISCUSSION/CONCLUSIONS

In this paper we presented a novel way of updating
an adaptive appearance model of a tracking system. We
argued that using Multiple Instance Learning to train
the appearance classifier results in more robust tracking,
and presented an online boosting algorithm for MIL. We
presented empirical results on many challenging video
clips where we measured quantitative performance of
our tracker compared to a number of competing state of
the art algorithms; these results show that our tracker
is, on average, the most robust with respect to partial
occlusions, and various appearance changes.

There are still some interesting unanswered ques-
tions about adaptive appearance models. Although our

method results in more robust tracking, it cannot com-
pletely avoid the types of problems that adaptive ap-
pearance trackers suffer from. In particular, if an object
is completely occluded for a long period of time, or if the
object leaves the scene completely, any tracker with an
adaptive appearance model will inevitably start learning
from incorrect examples and lose track of the object.
Some interesting work exploring ways to deal with this
issue has been presented in [33] and more recently in
[45]. These methods attempt to combine a pre-trained
object detector with an adaptively trained tracker. One
interesting avenue for future work would be to com-
bine these ideas with the ones presented in this paper.
Another challenge is to track articulated objects which
cannot be easily delineated with a bounding box. These
types of objects may require a part-based approach, such
as the recent methods in object detection [15], [46].

Finally, online algorithms for Multiple Instance Learn-
ing could be useful in areas outside of visual tracking.
Work on better algorithms and theoretical analysis relat-
ing offline/batch MIL and online MIL is already under
way (e.g. [47]), and we suspect more is to come.

ACKNOWLEDGEMENTS

Authors would like to thank Kristin Branson, Piotr
Dollár, David Ross and the anonymous reviewers for
valuable input. This research has been supported by
NSF CAREER Grant #0448615, NSF IGERT Grant DGE-
0333451, and ONR MURI Grant #N00014-08-1-0638.
M.H.Y. is supported in part by a UC Merced faculty start-
up fund and a Google faculty award. Part of this work
was done while B.B. and M.H.Y. were at Honda Research
Institute, USA.

REFERENCES

[1] S. Birchfield, “Elliptical head tracking using intensity gradients
and color histograms,” in CVPR, 1998, pp. 232–237.

[2] M. Isard and J. Maccormick, “Bramble: a bayesian multiple-blob
tracker,” in ICCV, vol. 2, 2001, pp. 34–41.

VISUAL TRACKING WITH ONLINE MULTIPLE INSTANCE LEARNING 13

(A) David Indoor

(B) Snack Bar

(C) Tea Box

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

OAB
s
(1) IVT

s MILTrack(45) MILTrack
s
(45)

Fig. 10. Tracking Object Location & Scale: screenshots showing results for tracking both location and scale of objects. Note that the localization
is much more precise when scale is one of the tracked parameters.

VISUAL TRACKING WITH ONLINE MULTIPLE INSTANCE LEARNING 14

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

David Indoor

Threshold

P
re

c
is

io
n

OAB
s
(1) [0.13]

IVT
s
 [0.98]

MILTrack(45) [0.52]

MILTrack
s
(45) [0.75]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Snack Bar

Threshold

P
re

c
is

io
n

OAB
s
(1) [0.76]

IVT
s
 [0.57]

MILTrack(45) [0.90]

MILTrack
s
(45) [0.98]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Tea Box

Threshold

P
re

c
is

io
n

OAB
s
(1) [0.74]

IVT
s
 [0.70]

MILTrack(45) [0.91]

MILTrack
s
(45) [0.87]

Fig. 11. Tracking Object Location & Scale: Precisions plots. See text for details.

Video Clip OABs(1) IVTs MILTrack(45) MILTracks(45)
David Indoor 0.13 0.98 0.52 0.75

Snack Bar 0.76 0.57 0.90 0.98
Tea Box 0.74 0.70 0.91 0.87

TABLE 4
Tracking Object Location & Scale: precision at a fixed threshold of 20. Bold green font indicates best performance, red italics font indicates

second best.

[3] K. Branson and S. Belongie, “Tracking multiple mouse contours
(without too many samples),” in CVPR, vol. 1, 2005.

[4] V. Lepetit and P. Fua, “Keypoint recognition using randomized
trees,” PAMI, vol. 28, no. 9, p. 1465, 2006.

[5] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,”
ACM Computing Surveys (CSUR), vol. 38, no. 4, 2006.

[6] G. Hager and P. Belhumeur, “Efficient region tracking with para-
metric models of geometry and illumination,” PAMI, vol. 20,
no. 10, pp. 1025–1039, 1998.

[7] M. Black and A. Jepson, “Eigentracking: Robust matching and
tracking of articulated objects using a view-based representation,”
IJCV, vol. 26, no. 1, pp. 63–84, 1998.

[8] D. Comaniciu, V. Ramesh, and P. Meer, “Real-time tracking of
non-rigid objects using mean shift,” in CVPR, vol. 2, 2000, pp.
142–149.

[9] A. Adam, E. Rivlin, and I. Shimshoni, “Robust fragments-based
tracking using the integral histogram,” in CVPR, vol. 1, 2006, pp.
798–805.

[10] A. D. Jepson, D. J. Fleet, and T. F. El-Maraghi, “Robust online
appearance models for visual tracking,” PAMI, vol. 25, no. 10,
pp. 1296–1311, 2003.

[11] I. Matthews, T. Ishikawa, and S. Baker, “The template update
problem,” PAMI, pp. 810–815, 2004.

[12] D. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental learning
for robust visual tracking,” IJCV, vol. 77, no. 1, pp. 125–141, 2008.

[13] T. G. Dietterich, R. H. Lathrop, and L. T. Perez, “Solving the
multiple-instance problem with axis parallel rectangles,” Artificial
Intelligence, pp. 31–71, 1997.

[14] P. Viola, J. C. Platt, and C. Zhang, “Multiple instance boosting for
object detection,” in NIPS, 2005, pp. 1417–1426.

[15] P. Dollár, B. Babenko, S. Belongie, P. Perona, and Z. Tu, “Multiple
component learning for object detection,” in ECCV, 2008.

[16] S. Andrews, I. Tsochantaridis, and T. Hofmann, “Support vector
machines for multiple-instance learning,” in NIPS, 2003, pp. 577–
584.

[17] C. Galleguillos, B. Babenko, A. Rabinovich, and S. Belongie,
“Weakly Supervised Object Recognition and Localization with
Stable Segmentations,” in ECCV, 2008.

[18] S. Vijayanarasimhan and K. Grauman, “Keywords to Visual Cate-
gories: Multiple-Instance Learning for Weakly Supervised Object
Categorization,” in CVPR, 2008.

[19] K. Okuma, A. Taleghani, N. De Freitas, J. Little, and D. Lowe, “A
boosted particle filter: Multitarget detection and tracking,” ECCV,
pp. 28–39, 2004.

[20] M. Isard and A. Blake, “Contour tracking by stochastic propaga-
tion of conditional density,” ECCV, vol. 1064, pp. 343–356, 1996.

[21] L. Vese and T. Chan, “A multiphase level set framework for image
segmentation using the Mumford and Shah model,” IJCV, vol. 50,
no. 3, pp. 271–293, 2002.

[22] M. Salzmann, V. Lepetit, and P. Fua, “Deformable surface tracking
ambiguities,” in CVPR, 2007.

[23] A. O. Balan and M. J. Black, “An adaptive appearance model
approach for model-based articulated object tracking,” in CVPR,
vol. 1, 2006, pp. 758–765.

[24] R. Lin, D. Ross, J. Lim, and M.-H. Yang, “Adaptive Discriminative
Generative Model and Its Applications,” in NIPS, 2004, pp. 801–
808.

[25] H. Grabner, M. Grabner, and H. Bischof, “Real-time tracking via
on-line boosting,” in BMVC, 2006, pp. 47–56.

[26] X. Liu and T. Yu, “Gradient feature selection for online boosting,”
in ICCV, 2007, pp. 1–8.

[27] S. Avidan, “Ensemble tracking,” in CVPR, vol. 2, 2005, pp. 494–
501.

[28] ——, “Support vector tracking,” PAMI, vol. 26, no. 8, pp. 1064–
1072, 2004.

[29] J. Wang, X. Chen, and W. Gao, “Online selecting discriminative
tracking features using particle filter,” in CVPR, vol. 2, 2005, pp.
1037–1042.

[30] R. T. Collins, Y. Liu, and M. Leordeanu, “Online selection of
discriminative tracking features,” PAMI, vol. 27, no. 10, pp. 1631–
1643, 2005.

[31] G. Mori and J. Malik, “Recovering 3d human body configurations
using shape contexts,” PAMI, vol. 28, no. 7, pp. 1052–1062, 2006.

[32] P. Viola and M. Jones, “Rapid object detection using a boosted
cascade of simple features,” in CVPR, vol. 1, 2001, pp. 511–518.

[33] H. Grabner, C. Leistner, and H. Bischof, “Semi-supervised on-line
boosting for robust tracking,” in ECCV, 2008.

[34] N. C. Oza, “Online Ensemble Learning,” Ph.D. Thesis, University
of California, Berkeley, 2001.

[35] P. Dollár, Z. Tu, H. Tao, and S. Belongie, “Feature mining for image
classification,” in CVPR, 2007.

[36] Z. Khan, T. Balch, and F. Dellaert, “A rao-blackwellized particle
filter for eigentracking,” in CVPR, vol. 2, 2004.

[37] J. H. Friedman, “Greedy function approximation: A gradient
boosting machine,” The Annals of Statistics, vol. 29, no. 5, pp. 1189–
1232, 2001.

[38] B. Babenko, P. Dollár, Z. Tu, and S. Belongie, “Simultaneous
Learning and Alignment: Multi-Instance and Multi-Pose Learn-
ing,” in Faces in Real-Life Images, 2008.

[39] Y. Freund and R. E. Schapire, “A decision-theoretic generalization
of on-line learning and an application to boosting,” Journal of
Computer and System Sciences, vol. 55, pp. 119–139, 1997.

[40] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic re-
gression: a statistical view of boosting,” The Annals of Statistics,
vol. 28, no. 2, pp. 337–407, 2000.

[41] C. Leistner, A. Saffari, P. Roth, and H. Bischof, “On robustness of
on-line boosting-a competitive study,” in 3rd IEEE ICCV Workshop
on On-line Computer Vision, 2009.

[42] H. Grabner and H. Bischof, “On-line boosting and vision,” in
CVPR, Washington, DC, USA, 2006, pp. 260–267.

[43] A. Chan and N. Vasconcelos, “Modeling, clustering, and segment-

VISUAL TRACKING WITH ONLINE MULTIPLE INSTANCE LEARNING 15

ing video with mixtures of dynamic textures,” PAMI, vol. 30, no. 5,
pp. 909–926, 2008.

[44] M. Everingham, L. Van Gool, C. K. I. Williams,
J. Winn, and A. Zisserman, “The PASCAL Visual
Object Classes Challenge 2010 (VOC2010) Results.” [On-
line]. Available: http://www.pascal-network.org/challenges/
VOC/voc2010/workshop/index.html

[45] S. Stalder, H. Grabner, and L. van Gool, “Beyond Semi-Supervised
Tracking: Tracking Should Be as Simple as Detection, but not
Simpler than Recognition,” in Online Learning in Computer Vision
(OLCV) Workshop, 2009.

[46] P. Felzenszwalb, D. McAllester, and D. Ramanan, “A discrimina-
tively trained, multiscale, deformable part model.” CVPR, 2008.

[47] L. Mu, J. Kwok, and L. Bao-liang, “Online Multiple Instance
Learning with No Regret,” in CVPR, 2010.

Boris Babenko graduated summa cum laude
from U.C. San Diego, earning a B.S. degree
in Computer Science in 2006. He is currently
a Ph.D. student at U.C. San Diego. He is a
recipient of a 2007 “Vision and Learning in Hu-
mans and Machines” NSF IGERT Award and the
2010 Google Research Fellowship in Computer
Vision. His research interests include computer
vision and machine learning.

Ming-Hsuan Yang is an assistant professor in
EECS at University of California, Merced. He re-
ceived the PhD degree in computer science from
the University of Illinois at Urbana-Champaign
in 2000. He studied at the National Tsing-Hua
University, Taiwan, the University of Southern
California, and the University of Texas at Austin.
He was a senior research scientist at the Honda
Research Institute working on vision problems
related to humanoid robots. In 1999, he received
the Ray Ozzie fellowship for his research work.

He coauthored the book Face Detection and Gesture Recognition
for Human-Computer Interaction (Kluwer Academic 2001) and edited
special issue on face recognition for Computer Vision and Image Under-
standing in 2003. He served as an area chair for the IEEE Conference
on Computer Vision and Pattern Recognition, and the Asian Conference
on Computer Vision. He is an associate editor of the IEEE Transactions
on Pattern Analysis and Machine Intelligence, and Image and Vision
Computing. He is a senior member of the IEEE and the ACM.

Serge Belongie received the B.S. degree (with
honor) in Electrical Engineering from the Califor-
nia Institute of Technology in 1995 and the M.S.
and Ph.D. degrees in Electrical Engineering and
Computer Sciences (EECS) at U.C. Berkeley in
1997 and 2000, respectively. While at Berke-
ley, his research was supported by a National
Science Foundation Graduate Research Fellow-
ship. He is also a co-founder of Digital Persona,
Inc., and the principal architect of the Digital
Persona fingerprint recognition algorithm. He is

currently an associate professor in the Computer Science and Engi-
neering Department at U.C. San Diego. His research interests include
computer vision and pattern recognition. He is a recipient of the NSF
CAREER Award and the Alfred P. Sloan Research Fellowship. In 2004
MIT Technology Review named him to the list of the 100 top young
technology innovators in the world (TR100).

