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Supervised Learning

e (example, label) pairs provided during training




Multiple Instance Learning (MIL)

* (set of examples, label) pairs provided
 MIL lingo: set of examples = bag of instances
* Learner does not see instance labels

* Bag labeled positive if at least one instance in
bag is positive

[Dietterich et al. ‘97]



MIL Example: Face Detection

Instance: image patch
Instance Label: is face?
Bag: whole image

Bag Label: contains face?

[Andrews et al. ’02, Viola et al. 05, Dollar et al. 08, Galleguillos et al. 08]



PAC Analysis of MIL

* Bound bag generalization error in terms of
empirical error

* Data model (bottom up)

= Draw 7 instances and their labels from fixed
distribution D7

= Create bag from instances, determine its label
(max of instance labels)

= Return bag & bag label to learner
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Data Model
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Data Model
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PAC Analysis of MIL

 Blum & Kalai (1998)

= |f: access to noise tolerant instance learner,
instances drawn independently

= Then: bag sample complexity linear in r
e Sabato & Tishby (2009)

= |[f: can minimize empirical error on bags
= Then: bag sample complexity logarithmic in r



MIL Applications

* Recently MIL has become popular in applied
areas (vision, audio, etc)

* Disconnect between theory and many of
these applications



MIL Example: Face Detection (Images)

Bag: whole image
Instance: image patch

[Andrews et al. ’02, Viola et al. 05, Dollar et al. 08, Galleguillos et al. 08]



MIL Example: Phoneme Detection (Audio)

Detecting ‘sh’” phoneme
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Bag: audio of word
Instance: audio clip

[Mandel et al. ‘08]



MIL Example: Event Detection (Video)

Bag: video
Instance: few frames

[Ali et al. ‘08, Buehler et al. ’09, Stikic et al. ‘09]



Observations for these applications

* Top down process: draw entire bag from a bag
distribution, then get instances

* |nstances of a bag lie on a manifold



Manifold Bags
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Manifold Bags

* For such problems:

= Existing analysis not appropriate because number
of instances is infinite

= Expect sample complexity to scale with manifold
parameters (curvature, dimension, volume, etc)



Manifold Bags: Formulation

* Manifold bag b drawn from bag distributionDg

* |nstance hypotheses:
heH, h:ZT—{0,1}
* Corresponding bag hypotheses:

heH, h:B—1{0,1}

h(b) = maxgep h(z)



Typical Route: VC Dimension

 Error Bound:




Typical Route: VC Dimension

 Error Bound:

generalization error # of training bags

empirical error



Typical Route: VC Dimension

 Error Bound:

VC Dimension of bag hypothesis class



Relating 7{ to

* We do have a handle on VC(H)
* For finite sized bags, Sabato & Tishby:

VC(H) < VC(H)log(r)

* Question: can we assume manifold bags are
smooth and use a covering argument?



VC of bag hypotheses is unbounded!

* Let H be half spaces (hyperplanes)

* For arbitrarily smooth bags can always
construct any number of bags s.t. all possible

labelings achieved by #
e Thus, VC(H) unbounded!



Example (3 bags)
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Example (3 bags)




Example (3 bags)




Example (3 bags)




Example (3 bags)

Want labeling (101)



Example (3 bags)

heH

Achieves labeling (101)



Example (3 bags)
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All possible labelings



* Bag hypothesis class too powerful

= For positive bag, need to only classify 1 instance
as positive

= Infinitely many instances -> too much flexibility for
bag hypothesis

* Would like to ensure a non-negligible portion
of positive bags is labeled positive



* Switch to real-valued hypothesis class
*h. € H,:Z—|0,1]
= corresponding bag hypothesis also real-valued

= binary label via thresholding
= true labels still binary

* Require that A, is (lipschitz) smooth
* |ncorporate a notion of margin
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Fat-shattering Dimension

« F.(H,) = “Fat-shattering” dimension of real-
valued hypothesis class [Anthony & Bartlett 99]

= Analogous to VC dimension
* Relates generalization error to empirical error
at margin 7

= j.e. not only does binary label have to be correct,
margin has beto > vy



Fat-shattering of Manifold Bags

 Error Bound:




Fat-shattering of Manifold Bags

 Error Bound:

e<é,+0 (\/Fwir(ﬁr))

generalization error # of training bags

empirical error at margin 7



Fat-shattering of Manifold Bags

 Error Bound:

e < é, +Oy/i§%))

fat shattering of bag hypothesis class




Fat-shattering of Manifold Bags

* Bound F,(H,) interms of F.(H,)
= Use covering arguments — approximate manifold
with finite number of points

= Analogous to Sabato & Tishby’s analysis of finite
size bags



* With high probability:
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* With high probability:
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* With high probability:
e<eée,+0 (\/n2F7£6(i{) 10g2 (’y‘gZ}”L ))

fat shattering of instance hypothesis class




* With high probability:
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number of training bags



* With high probability:
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* With high probability:

manifold volume



* With high probability:

A ??,2ny 1 (H) 2 m
ege,y—kO(\/ 7/n6 log (WZRn))

term depends (inversely) on smoothness of manifolds &
smoothness of instance hypothesis class



* With high probability:

~ ?’LzF,y 1 (7‘[) m
egefy—kO(\/ 7/n6 log”? (W‘Q%n))

* Obvious strategy for learner:
= Minimize empirical error & maximize margin
= This is what most MIL algorithms already do



Learning from Queried Instances

* Previous result assumes learner has access
entire manifold bag

* |n practice learner will only access small
number of instances ( P )

* Not enough instances -> might not draw a pos.
instance from pos. bag



Learning from Queried Instances

holds with failure probability increased by ¢ if
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Take-home Message

* Increasing m reduces complexity term

* Increasing p reduces failure probability

= Seems to contradict previous results (smaller bag
size T is better)

» Important difference between 7 and p |

= If pistoo small we may only get negative
instances from a positive bag

* Increasing m requires extra labels, increasing p
does not



Iterative Querying Heuristic (IQH)

* Problem: want many instances/bag, but have
computational limits

 Heuristic solution:

= Grab small number of instances/bag, run standard
MIL algorithm

= Query more instances from each bag, only keep
the ones that get high score from current classifier

e At each iteration, train with small # of
Instances



* Synthetic Data (will skip in interest of time)

* Real Data
= INRIA Heads (images)
= TIMIT Phonemes (audio)



INRIA Heads

[Dalal et al. ‘05]



TIMIT Phonemes
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[Garofolo et al., ‘93]
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Bag error

Number of Instances ( 0 )
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Number of Iterations (heuristic)
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Conclusion

 For many MIL problems, bags modeled better
as manifolds

 PAC Bounds depend on manifold properties
* Need many instances per manifold bag

* |terative approach works well in practice,
while keeping comp. requirements low

* Further algorithmic development taking
advantage of manifold would be interesting



* Happy to take questions!



Why not learn directly over bags?

* Some MIL approaches do this
= Wang & Zucker ‘00, Gartner et al. ‘02

* |n practice, instance classifier is desirable
* Consider image application (face detection)

= Face can be anywhere in image

= Need features that
are extremely robust




Why not instance error?

* Consider this example:

h*

h

* |n practice instance error tends to be low (if
bag error is low)



Doesn’t VC have lower bound?

e Subtle issue with FAT bounds
« If the distribution is terrible, €., will be high

e Consider SVMs with RBF kernel

= VC dimension of linear separator is n+1

= FAT dimension only depends on margin (Bartlett &
Shawe-Taylor, 02)



Aren’t there finite number of image patches?

 We are modeling the data as a manifold
* |n practice, everything gets discretized

e Actual number of instances (e.g. image
patches with any scale/orientation) may be
huge — existing bounds still not appropriate



