# Multiple Instance Learning with Manifold Bags

Boris Babenko, Nakul Verma, Piotr Dollar, Serge Belongie

**ICML 2011** 





## **Supervised Learning**

(example, label) pairs provided during training

#### Multiple Instance Learning (MIL)

- (set of examples, label) pairs provided
- MIL lingo: set of examples = bag of instances
- Learner does not see instance labels
- Bag labeled positive if at least one instance in bag is positive

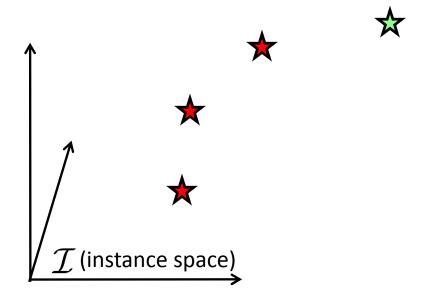
### MIL Example: Face Detection

### **PAC Analysis of MIL**

- Bound bag generalization error in terms of empirical error
- Data model (bottom up)
  - Draw r instances and their labels from fixed distribution  $\mathcal{D}_{\mathcal{I}}$
  - Create bag from instances, determine its label (max of instance labels)
  - Return bag & bag label to learner

### **Data Model**

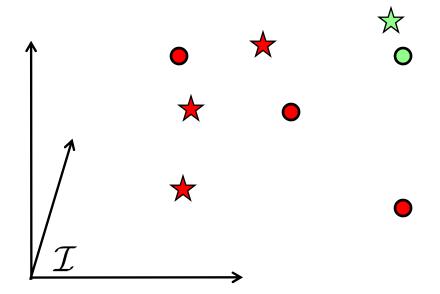
**☆**Bag 1: positive



**■** Negative instance **■** Positive instance

## Data Model

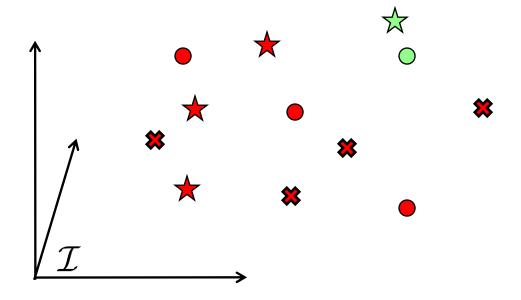
#### ○ Bag 2: positive



■ Negative instance ■ Positive instance

## Data Model

#### ⇔ Bag 3: negative



**■** Negative instance **■** Positive instance

### **PAC Analysis of MIL**

- Blum & Kalai (1998)
  - If: access to noise tolerant instance learner, instances drawn independently
  - Then: bag sample complexity linear in r
- Sabato & Tishby (2009)
  - If: can minimize empirical error on bags
  - Then: bag sample complexity logarithmic in r

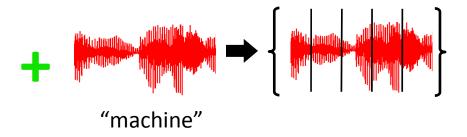
#### **MIL Applications**

- Recently MIL has become popular in applied areas (vision, audio, etc)
- Disconnect between theory and many of these applications

## MIL Example: Face Detection (Images)

### MIL Example: Phoneme Detection (Audio)

#### Detecting 'sh' phoneme

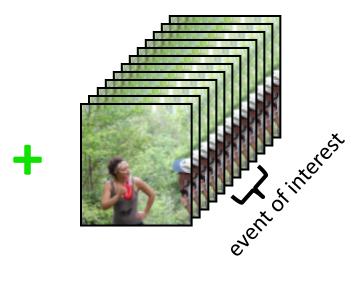


- { light | l

Bag: audio of word

Instance: audio clip

#### MIL Example: Event Detection (Video)



Bag: video

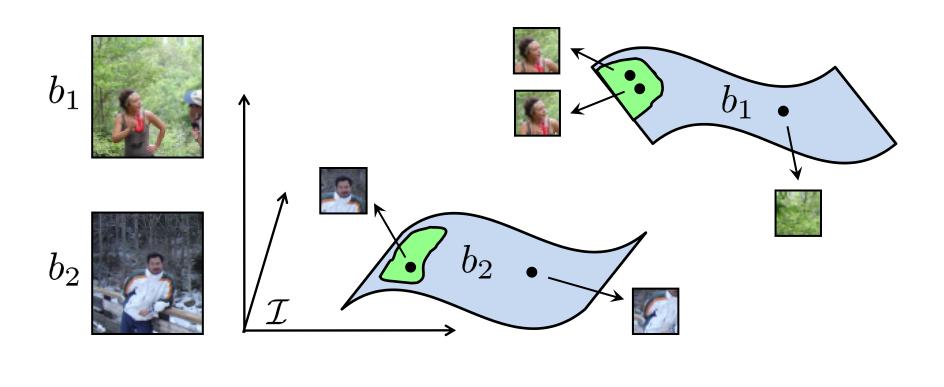
**Instance**: few frames



#### Observations for these applications

- Top down process: draw entire bag from a bag distribution, then get instances
- Instances of a bag lie on a manifold

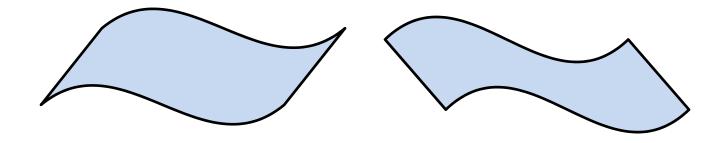
## **Manifold Bags**



Negative region Positive region

## **Manifold Bags**

- For such problems:
  - Existing analysis not appropriate because number of instances is infinite
  - Expect sample complexity to scale with manifold parameters (curvature, dimension, volume, etc)



#### **Manifold Bags: Formulation**

- Manifold bag b drawn from **bag** distribution  $\mathcal{D}_{\mathcal{B}}$
- Instance hypotheses:

$$h \in \mathcal{H}, h: \mathcal{I} \to \{0, 1\}$$

Corresponding bag hypotheses:

$$\bar{h} \in \overline{\mathcal{H}}, \ \bar{h} : \mathcal{B} \to \{0, 1\}$$

$$\bar{h}(b) \stackrel{\text{def}}{=} \max_{x \in b} h(x)$$

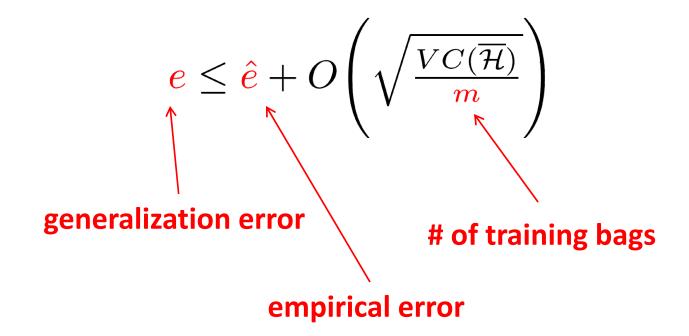
## **Typical Route: VC Dimension**

• Error Bound:

$$e \le \hat{e} + O\left(\sqrt{\frac{VC(\overline{\mathcal{H}})}{m}}\right)$$

## Typical Route: VC Dimension

• Error Bound:



#### **Typical Route: VC Dimension**

• Error Bound:

$$e \le \hat{e} + O\left(\sqrt{\frac{VC(\overline{\mathcal{H}})}{m}}\right)$$

**VC Dimension of bag hypothesis class** 

# Relating $\overline{\mathcal{H}}$ to $\mathcal{H}$

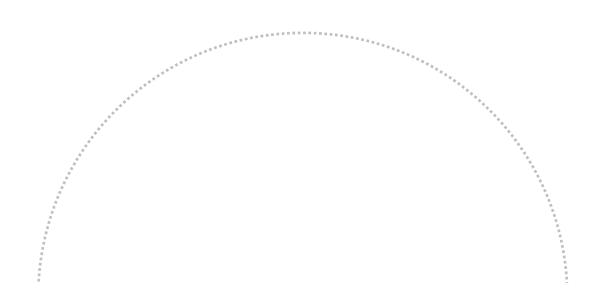
- We do have a handle on  $VC(\mathcal{H})$
- For finite sized bags, Sabato & Tishby:

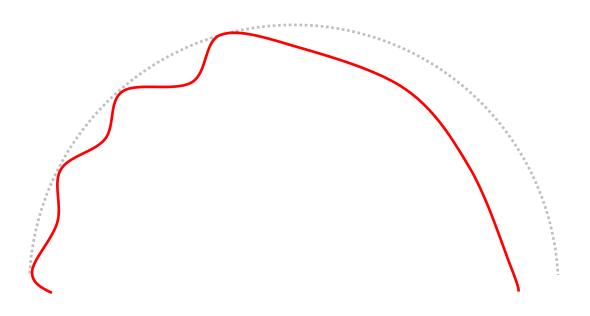
$$VC(\overline{\mathcal{H}}) \le VC(\mathcal{H})\log(r)$$

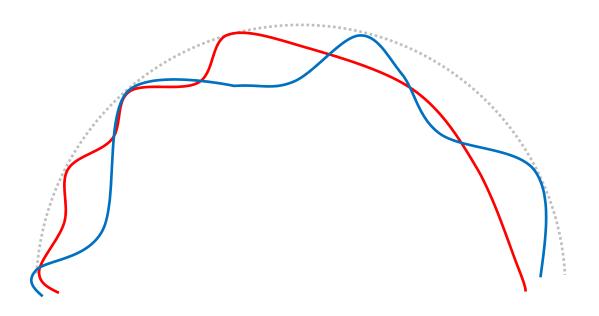
 Question: can we assume manifold bags are smooth and use a covering argument?

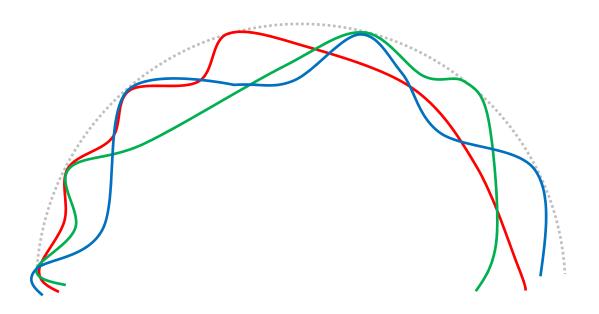
#### VC of bag hypotheses is unbounded!

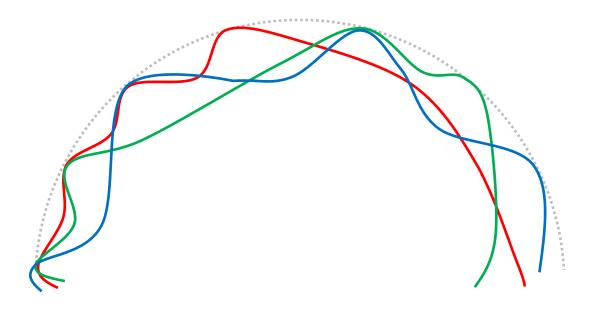
- Let  $\mathcal{H}$  be half spaces (hyperplanes)
- For arbitrarily smooth bags can always construct any number of bags s.t. **all possible** labelings achieved by  $\overline{\mathcal{H}}$
- Thus,  $VC(\overline{\mathcal{H}})$  unbounded!



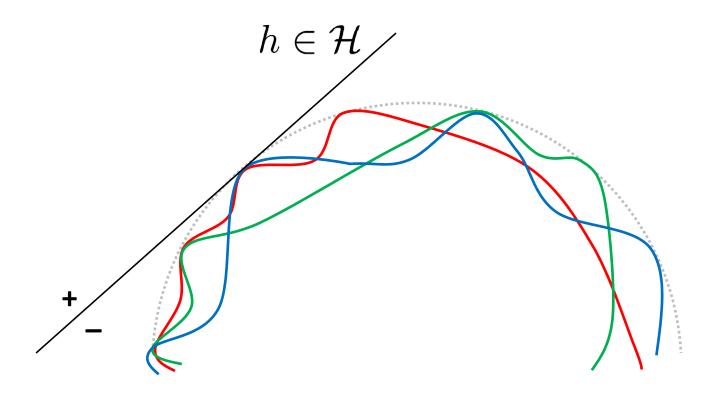




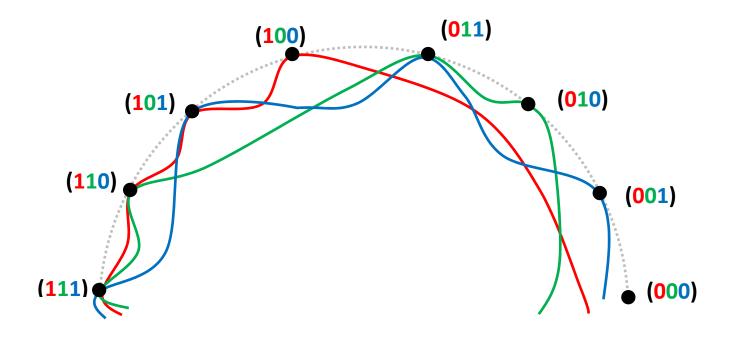




Want labeling (101)



Achieves labeling (101)



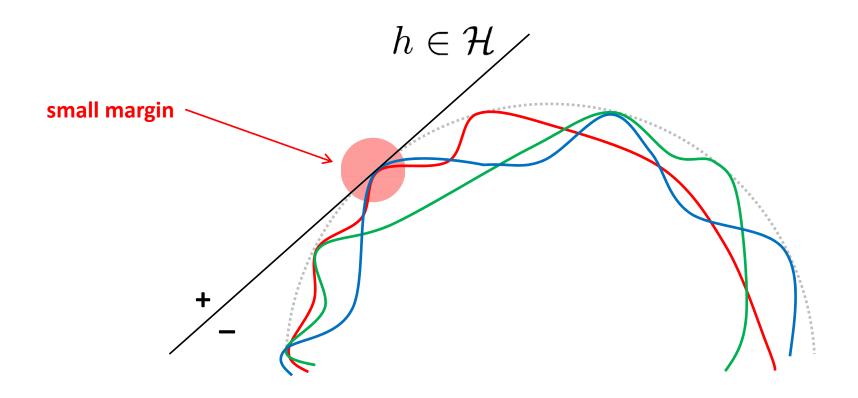
All possible labelings

#### Issue

- Bag hypothesis class too powerful
  - For positive bag, need to only classify 1 instance as positive
  - Infinitely many instances -> too much flexibility for bag hypothesis
- Would like to ensure a non-negligible portion of positive bags is labeled positive

#### Solution

- Switch to real-valued hypothesis class
  - $h_r \in \mathcal{H}_r : \mathcal{I} \to [0,1]$
  - corresponding bag hypothesis also real-valued
  - binary label via thresholding
  - true labels still binary
- Require that  $h_r$  is (lipschitz) **smooth**
- Incorporate a notion of margin



#### **Fat-shattering Dimension**

- $F_{\gamma}(\overline{\mathcal{H}}_r)$  = "Fat-shattering" dimension of realvalued hypothesis class [Anthony & Bartlett '99]
  - Analogous to VC dimension
- Relates **generalization** error to **empirical** error at margin  $\gamma$ 
  - i.e. not only does binary label have to be correct, margin has be to  $\geq \gamma$

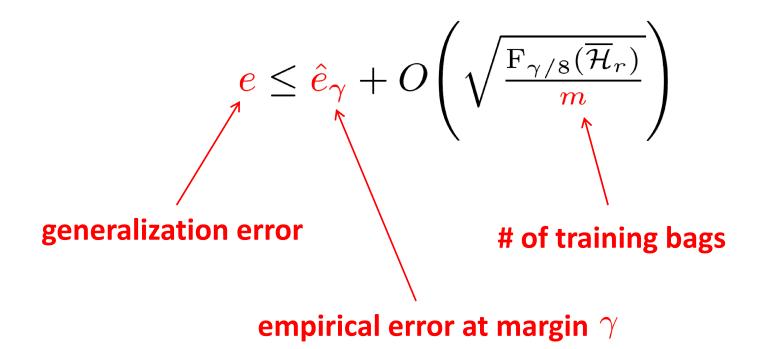
#### **Fat-shattering of Manifold Bags**

• Error Bound:

$$e \le \hat{e}_{\gamma} + O\left(\sqrt{\frac{\mathbf{F}_{\gamma/8}(\overline{\mathcal{H}}_r)}{m}}\right)$$

#### **Fat-shattering of Manifold Bags**

• Error Bound:



#### **Fat-shattering of Manifold Bags**

• Error Bound:

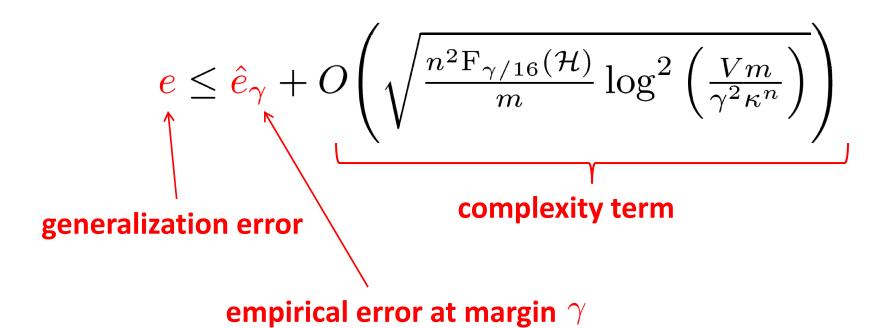
$$e \le \hat{e}_{\gamma} + O\left(\sqrt{\frac{\mathbf{F}_{\gamma/8}(\overline{\mathcal{H}}_r)}{m}}\right)$$

fat shattering of bag hypothesis class

# **Fat-shattering of Manifold Bags**

- Bound  $F_{\gamma}(\overline{\mathcal{H}}_r)$  in terms of  $F_{\gamma}(\mathcal{H}_r)$ 
  - Use covering arguments approximate manifold with finite number of points
  - Analogous to Sabato & Tishby's analysis of finite size bags

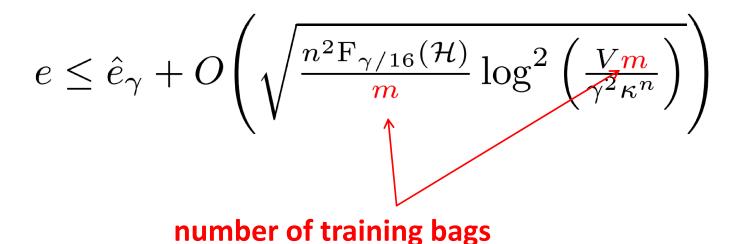
$$e \le \hat{e}_{\gamma} + O\left(\sqrt{\frac{n^2 F_{\gamma/16}(\mathcal{H})}{m} \log^2\left(\frac{Vm}{\gamma^2 \kappa^n}\right)}\right)$$

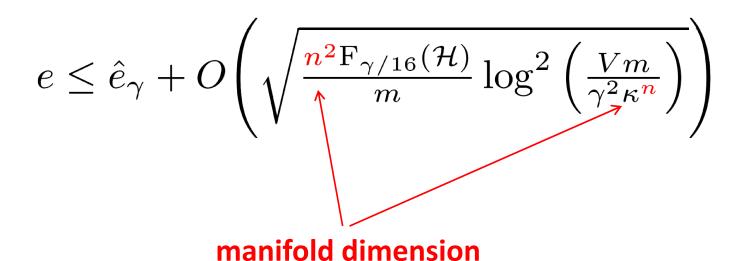


With high probability:

$$e \le \hat{e}_{\gamma} + O\left(\sqrt{\frac{n^2 \mathbf{F}_{\gamma/16}(\mathcal{H})}{m}} \log^2\left(\frac{Vm}{\gamma^2 \kappa^n}\right)\right)$$

fat shattering of <u>instance</u> hypothesis class





With high probability:

$$e \le \hat{e}_{\gamma} + O\left(\sqrt{\frac{n^2 F_{\gamma/16}(\mathcal{H})}{m} \log^2\left(\frac{Vm}{\gamma^2 \kappa^n}\right)}\right)$$

manifold volume

With high probability:

$$e \le \hat{e}_{\gamma} + O\left(\sqrt{\frac{n^2 F_{\gamma/16}(\mathcal{H})}{m} \log^2\left(\frac{Vm}{\gamma^2 \kappa^n}\right)}\right)$$

term depends (inversely) on smoothness of manifolds & smoothness of instance hypothesis class

$$e \le \hat{e}_{\gamma} + O\left(\sqrt{\frac{n^2 F_{\gamma/16}(\mathcal{H})}{m} \log^2\left(\frac{Vm}{\gamma^2 \kappa^n}\right)}\right)$$

- Obvious strategy for learner:
  - Minimize empirical error & maximize margin
  - This is what most MIL algorithms already do

## **Learning from Queried Instances**

- Previous result assumes learner has access entire manifold bag
- In practice learner will only access small number of instances (  $\rho$  )



 Not enough instances -> might not draw a pos. instance from pos. bag

## **Learning from Queried Instances**

Bound

$$e \le \hat{e}_{\gamma} + O\left(\sqrt{\frac{n^2 F_{\gamma/16}}{m} \log^2\left(\frac{Vm}{\gamma^2 \kappa^n}\right)}\right)$$

holds with failure probability increased by  $\delta$  if

$$\rho \ge \Omega\left(\left(V/\kappa^n\right)\left(n + \ln\left(\frac{mV}{\kappa^n\delta}\right)\right)\right)$$

# **Take-home Message**

- Increasing m reduces complexity term
- Increasing  $\rho$  reduces failure probability
  - Seems to contradict previous results (smaller bag size r is better)
  - Important difference between  $\,r$  and ho !
  - If  $\rho$  is too small we may only get negative instances from a positive bag
- Increasing m requires extra labels, increasing  $\rho$  does not

# **Iterative Querying Heuristic (IQH)**

- Problem: want many instances/bag, but have computational limits
- Heuristic solution:
  - Grab small number of instances/bag, run standard
    MIL algorithm
  - Query more instances from each bag, only keep the ones that get high score from current classifier
- At each iteration, train with small # of instances

# **Experiments**

- Synthetic Data (will skip in interest of time)
- Real Data
  - INRIA Heads (images)
  - TIMIT Phonemes (audio)

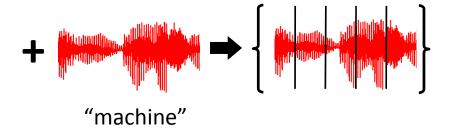
# **INRIA** Heads



pad=16



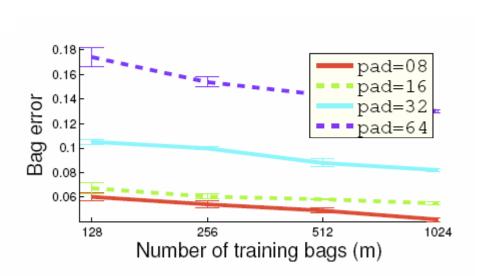
pad=32



# Padding (volume)

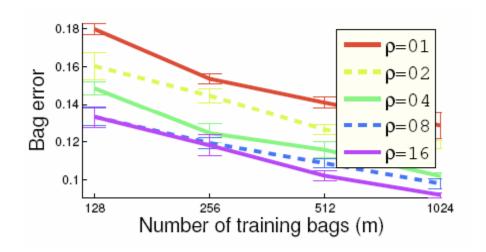
#### **INRIA** Heads

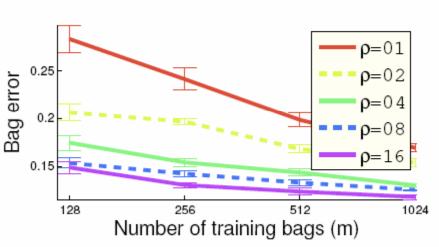
# 0.16 pad=04 pad=08 pad=16 pad=32 pad=32 Number of training bags (m)



# Number of Instances ( $\rho$ )

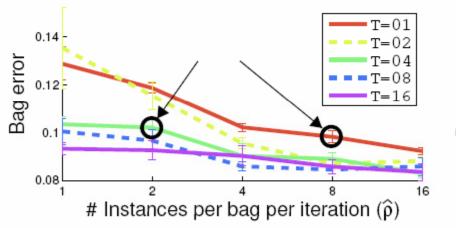
#### **INRIA** Heads

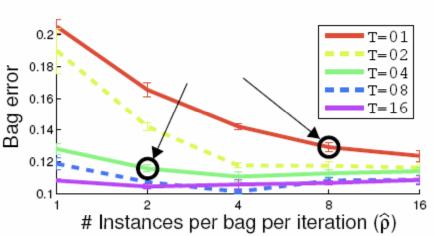




# Number of Iterations (heuristic)

#### **INRIA** Heads





## Conclusion

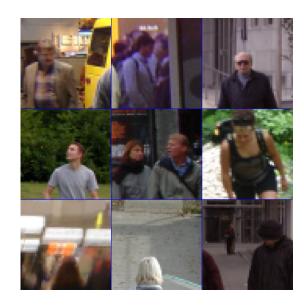
- For many MIL problems, bags modeled better as manifolds
- PAC Bounds depend on manifold properties
- Need many instances per manifold bag
- Iterative approach works well in practice,
  while keeping comp. requirements low
- Further algorithmic development taking advantage of manifold would be interesting

# **Thanks**

Happy to take questions!

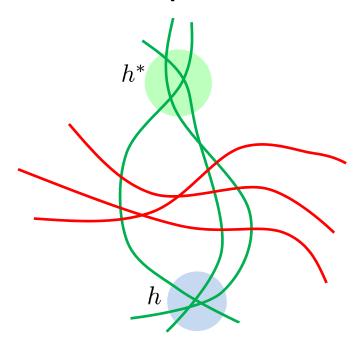
# Why not learn directly over bags?

- Some MIL approaches do this
  - Wang & Zucker '00, Gartner et al. '02
- In practice, instance classifier is desirable
- Consider image application (face detection)
  - Face can be anywhere in image
  - Need features that are extremely robust



# Why not instance error?

Consider this example:



 In practice instance error tends to be low (if bag error is low)

## Doesn't VC have lower bound?

- Subtle issue with FAT bounds
  - If the distribution is terrible,  $\,\hat{e}_{\gamma}$  will be high
- Consider SVMs with RBF kernel
  - VC dimension of linear separator is n+1
  - FAT dimension only depends on margin (Bartlett & Shawe-Taylor, 02)

## Aren't there finite number of image patches?

- We are modeling the data as a manifold
- In practice, everything gets discretized
- Actual number of instances (e.g. image patches with any scale/orientation) may be huge – existing bounds still not appropriate