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Abstract

In many machine learning applications, la-
beling every instance of data is burdensome.
Multiple Instance Learning (MIL), in which
training data is provided in the form of la-
beled bags rather than labeled instances, is
one approach for a more relaxed form of su-
pervised learning. Though much progress has
been made in analyzing MIL problems, ex-
isting work considers bags that have a finite
number of instances. In this paper we argue
that in many applications of MIL (e.g. im-
age, audio, etc.) the bags are better modeled
as low dimensional manifolds in high dimen-
sional feature space. We show that the ge-
ometric structure of such manifold bags af-
fects PAC-learnability. We discuss how a
learning algorithm that is designed for finite
sized bags can be adapted to learn from mani-
fold bags. Furthermore, we propose a simple
heuristic that reduces the memory require-
ments of such algorithms. Our experiments
on real-world data validate our analysis and
show that our approach works well.

1. Introduction

Traditional supervised learning requires example/label
pairs during training. However, in many domains la-
beling every single instance of data is either tedious
or impossible. The Multiple Instance Learning frame-
work (MIL), introduced by Dietterich et al. (1997),
provides a general paradigm for a more relaxed form
of supervised learning: instead of receiving exam-
ple/label pairs, the learner gets unordered sets of in-
stances, or bags, and labels are provided for each bag,
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rather than for each instance. A bag is labeled positive
if it contains at least one positive instance. In recent
years MIL has received significant attention in terms
of both algorithm design and applications (Maron &
Lozano-Perez, 1998; Andrews et al., 2002; Zhang &
Goldman, 2002; Viola et al., 2005).

Theoretical PAC-style analysis of MIL problems has
also seen progress in the last decade (Auer et al., 1997;
Blum & Kalai, 1998; Long & Tan, 1998; Sabato &
Tishby, 2009; Sabato et al., 2010). Typical analysis
formulates the MIL problem as follows: a fixed num-
ber of instances, r, is drawn from an instance space I
to form a bag. The sample complexity for bag classi-
fication is then analyzed in terms of the bag size (r).
Most of the theory work has focused on reducing the
dependence on r under various settings. For example,
Blum & Kalai (1998) showed that if one has access to
a noise tolerant learner and the bags are formed by
drawing r independent samples from a fixed distribu-
tion over I, then the sample complexity grows linearly
with r. Recently, Sabato & Tishby (2009) showed that
if one can minimize the empirical error on bags, then
even if the instances in a bag have arbitrary statistical
dependence, sample complexity grows only logarithmi-
cally with r.

The above line of work is rather restrictive. Any de-
pendence on r makes it impossible to apply these gen-
eralization bounds to problems where bags have in-
finitely many instances – a typical case in practice.
Consider the following motivating example: we would
like to predict whether an image contains a face (as
in Viola et al., 2005). Putting this in the MIL frame-
work, a bag is an entire image, which is labeled pos-
itive if and only if there is a face in that image. The
individual instances are image patches. Notice that
in this scenario the instances collectively form (a dis-
crete approximation to) a low-dimensional manifold;
see Figure 1. Here we expect the sample complexity
to scale with the geometric properties of the underly-
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Figure 1. Manifold Bags: In this example the task is to predict whether an image contains a face. Each bag is an
image, and individual instances are image patches of a fixed size. Examples of two positive bags b1 and b2 (left), and a
visualization of the instance space I (right) are shown. The two bags trace out low-dimensional manifolds in I; in this
case the manifold dimension is two since there are two degrees of freedom (the x and y location of the image patch). The
green regions on the manifolds indicate the portion of the bags that is positive.

ing manifold bag rather than the number of instances
per bag.

This situation arises in many other MIL applications
where some type of sliding window is used to break up
an object into many overlapping pieces: images (An-
drews et al., 2002; Viola et al., 2005), video (Ali &
Shah, 2008; Buehler et al., 2009), audio (Saul et al.,
2001; Mandel & Ellis, 2008), and sensor data (Stikic
& Schiele, 2009). Consider also the original molecule
classification task that motivated Dietterich et al.
(1997) to develop MIL, where a bag corresponds to
a molecule, and instances are different shapes that
molecule can assume. Even in this application, “as
the molecule changes its shape, it traces out a mani-
fold through [feature] space” (Maron & Lozano-Perez,
1998). Thus, manifold structure is an integral aspect
of these problems that needs to be taken into account
in MIL analysis and algorithm design.

In this work we analyze the MIL framework for bags
containing potentially infinite instances. In this set-
ting a bag is drawn from a bag distribution, and is
labeled positive if it contains at least one positive in-
stance. In order to have a tractable analysis, we im-
pose a structural constraint on the bags: we assume
that bags are low dimensional manifolds in the in-
stance space, as discussed above. We show that the
geometric structure of such bags is intimately related
to the PAC-learnability of MIL problems. We inves-
tigate how learning is affected if we have have access
to only a limited number of instances per manifold
bag. We then discuss how existing MIL algorithms,
that are designed for finite sized bags, can be adapted
to learn from manifold bags efficiently using an itera-
tive querying heuristic. Our experiments on real-world
data (image and audio) validate the intuition of our
analysis and show that our querying heuristic works
well in practice.

2. Problem Formulation and Analysis

Let I be the domain of instances (for the purposes of
our discussion we assume it to be RN for some large
N), and let B be the domain of bags. Here we impose
a structural constraint on B: each bag from B is a low
dimensional manifold over the instances of I. More
formally, each bag b ∈ B is a smooth bijection1 from
[0, 1]n to some subset of I (n � N). The geometric
properties of such bags are integral to our analysis. We
will thus do a quick review of the various properties of
manifolds that will be useful in our discussion.

2.1. Differential Geometry Basics

Let f be a smooth bijective mapping from [0, 1]n to
M ⊂ RN . We call the image of f (i.e. M) a manifold
(note that M is compact and has a boundary). The
dimension of the domain (n in our case) corresponds
to the latent degrees of freedom and is typically re-
ferred to as the intrinsic dimension of the manifold M
(denoted by dim(M)).

Since one of the key quantities in classic analysis of
MIL is the bag size, we require a similar quantity to
characterize the “size” of M . One natural way to char-
acterize this is in terms of the volume of M . The vol-
ume (denoted by vol(M)) is given by the quantity∫
u1,...,un

√
det(JTJ)du1 . . . dun, where J is the N × n

Jacobian matrix of the function f , with individual en-
tries defined as Jij := ∂fi/∂uj .

Unlike a finite size bag, a finite volume manifold
M ⊂ RN can be arbitrarily “complex” – it can twist
and turn in all sorts of ways in the surrounding space.
We therefore need to also get a handle on its curvi-

1Here we are only considering a restricted class of mani-
folds – those that are globally diffeomorphic to [0, 1]n. This
is only done for convenience. The results here are general-
izable to arbitrary (compact) manifolds.
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ness. Borrowing the notation from computational ge-
ometry literature, we can characterize the complexity
of M via its condition number (see Niyogi et al., 2006).
We say that the condition number of M (denoted by
cond(M)) is 1

τ , if τ is the largest number such that
the normals of length r < τ at any two distinct points
in M don’t intersect. One can bound the sectional
curvature of M at any point by 1/τ . Hence, when τ is
large, the manifold is relatively flat and vice versa.

With these definitions, we can define a structured fam-
ily of bag spaces.

Definition 1 We say that a bag space B belongs to
class (V, n, τ), if for every b ∈ B, we have2 that
dim(b) = n, vol(b) ≤ V , and cond(b) ≤ 1/τ .

In what follows, we will assume that B belongs to class
(V, n, τ). We now provide our main results, with all the
supporting proofs in the Appendix.

2.2. Learning with Manifold Bags

Since we are interested in PAC-style analysis, we will
be working with a fixed hypothesis class H over the
instance space I (that is, each h ∈ H is of the form
h : I → {0, 1}). The corresponding bag hypothesis
class H over the bag space B (where each h̄ ∈ H
is of the form h̄ : B → {0, 1}) is defined as the set
of classifiers {h̄ : h ∈ H} where, for any b ∈ B,

h̄(b)
def
= maxα∈[0,1]n h(b(α)). We assume that there is

some unknown instance classification rule h∗ : I →
{0, 1} that gives the true labels for all instances.

The learner gets access to m bag/label pairs (bi, yi)
m
i=1,

where each bag bi is drawn independently from an un-
known but fixed distribution DB over B, and is labeled

according to the MIL rule yi
def
= maxα∈[0,1]n h

∗(bi(α)).
We denote a sample of size m as Sm.

Our learner should ideally return the hypothesis h̄ that

achieves the lowest bag generalization3 error: err(h̄)
def
=

Eb∼DB [h̄(b) 6= y]. This, of course, is not possible as the
learner typically does not have access to the underly-
ing data distribution DB. Instead, the learner has ac-
cess to the sample Sm, and can minimize the empirical

error: êrr(h̄, Sm)
def
= 1

m

∑m
i=1 11{h̄(bi) 6= yi}. Various

PAC results relate these two quantities in terms of the
properties of H.

2Technically b is a function and not a manifold. For
readability, we will occasionally abuse the notation and
use b to mean the manifold produced by the image of b in
the instance space I.

3One can also talk about the generalization error over
instances. As noted in previous work (e.g. Sabato &
Tishby, 2009), PAC analysis of the instance error typically
requires stronger assumptions.

Perhaps the most obvious way to bound err(h̄) in
terms of êrr(h̄, Sm) is by analyzing the VC-dimension
of the bag hypotheses, VC(H), and applying the stan-
dard VC-bounds (see e.g. Vapnik & Chervonenkis,
1971). While finding the VC-dimension of the bag
hypothesis class is non-trivial, the VC-dimension of
the corresponding instance hypotheses, VC(H), is well
known for many popular choices of H. Sabato &
Tishby (2009) showed that for finite sized bags the
VC-dimension of bag hypotheses (and thus the gener-
alization error) can be bounded in terms of the VC-
dimension of the underlying instance hypotheses. Al-
though one might hope that this analysis could be car-
ried over to bags of infinite size that are well struc-
tured, this turns out to not be the case.

2.2.1. VC(H) is Unbounded for Arbitrarily
Smooth Manifold Bags

We begin with a surprising result which goes against
our intuition that requiring bag smoothness should suf-
fice in bounding VC(H). We demonstrate that re-
quiring the bags to be low-dimensional, arbitrarily flat
manifolds with fixed volume is not enough to get a
handle on generalization error even for one of the sim-
plest instance hypothesis classes (set of hyperplanes in
RN ). In particular,

Theorem 2 For any V > 0, n ≥ 1, τ < ∞, let
B contain all manifolds M such that dim(M) = n,
vol(M) ≤ V , and cond(M) ≤ 1/τ (i.e. B is the
largest member of class (V, n, τ)). Let H be the set of
hyperplanes in RN (N > n). Then for any m ≥ 1,
there exists a set of m bags b1, . . . , bm ∈ B, such that
the corresponding bag hypothesis class H (over the bag
space B) realizes all possible 2m labelings.

Thus, VC(H) is unbounded making PAC-learnability
seemingly impossible. To build intuition for this ap-
parent richness of H, and possible alternatives to
bound the generalization error, let us take a quick
look at the case of one-dimensional manifolds in R2

with halfspaces as our H. For any m, we can place a
set of m manifold bags in such a way that all labelings
are realizable by H (see Fig. 2 for an example where
m = 3; see Appendix A.1 for a detailed construction).

The key observation is that in order to label a bag
positive, the instance hypothesis needs to label just a
single instance in that bag positive. Considering that
our bags have an infinite number of points, the positive
region can occupy an arbitrarily small fraction of a
positively labeled bag. This gives our bag hypotheses
immense flexibility even when the underlying instance
hypotheses are quite simple.
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Figure 2. Bag hypotheses over manifold bags have
unbounded VC-dimension. Three bags (colored blue,
green and red) go around the eight anchor points (shown
as black dots) that are arranged along a section of a circle.
Notice that the hyperplanes tangent to the anchor points
achieve all possible bag labelings. The hypothesis h shown
above, for example, labels the red and blue bags positive,
and the green bag negative.

It seems that to bound err(h̄) we must ensure that
a non-negligible portion of a positive bag be labeled
positive. A natural way of accomplishing this is to
use a real-valued version of the instance hypothesis
class (i.e., classifiers of the form hr : I → [0, 1], and
labels determined by thresholding), and requiring that
functions in this class (a) be smooth, and (b) label a
positive bag with a certain margin. To understand why
these properties are needed, consider three ways that
hr can label the instances of a positive bag b as one
varies the latent parameter α (i.e., x-axis corresponds
to instances, y-axis corresponds to classifier output):

smooth 
margin

smooth 
margin

smooth 
margin

1

½ 

1

½ 
+

–

1

½ 

margin margin margin

0 0 0

In both the left and center panels, hr labels only a tiny
portion of the bag positive: in the first case hr barely
labels any instance above the threshold of 1/2, result-
ing in a small margin; in the second case, although
the margin is large, hr changes rapidly along the bag.
Finally, in the right panel, when both the margin and
smoothness conditions are met, a non-negligible por-
tion of b is labeled positive.

We shall thus study how to bound the generalization
error in this setting.

2.2.2. Learning with a Margin

Let Hr be the real-valued relaxation of H (i.e. each
hr ∈ Hr is now of the form hr : I → [0, 1]). In order to
ensure smoothness we impose a λ-Lipschitz constraint
on the instance hypotheses: ∀hr ∈ Hr, x, x′ ∈ I,
|hr(x) − hr(x

′)| ≤ λ‖x − x′‖2. We denote the cor-

responding bag hypothesis class as Hr. Note that the
true bag labels are still binary in this setting (i.e. de-
termined by h∗).

Similar to the VC-dimension, the “fat-shattering
dimension” of a real-valued bag hypothesis class,
fatγ(Hr), relates the generalization error to the em-
pirical error at margin γ (see for example Anthony &
Bartlett, 1999):

êrrγ(h̄r, Sm)
def
=

1

m

m∑
i=1

11{margin(h̄r(bi), yi) < γ}, (1)

where margin(x, y)
def
=

{
x− 1/2 y = 1
1/2− x otherwise

.

Recall that it was not possible to bound generalization
error in terms of the instance hypotheses using VC di-
mension. However, analogous to Sabato & Tishby’s
analysis of finite size bags (2009), we can bound gen-
eralization error for manifold bags in terms of the fat-
shattering dimension of instance hypotheses, fatγ(H).
In particular, we have the following:

Theorem 3 Let B belong to class (V, n, τ). Let Hr
be λ-Lipschitz smooth (w.r.t. `2-norm), and Hr be
the corresponding bag hypotheses over B. Pick any
0 < γ < 1 and m ≥ fatγ/16(Hr) ≥ 1. For any
0 < δ < 1, we have with probability at least 1− δ over
an i.i.d. sample Sm (of size m), for every h̄r ∈ Hr:

err(h̄r) ≤ êrrγ(h̄r, Sm) +

O

(√
n2fat γ

16
(Hr)

m
log2

( V m
γ2τn0

)
+

1

m
ln

1

δ

)
, (2)

where τ0 = min{ τ2 ,
γ
8 ,

γ
8λ}.

Observe that the complexity term in Eq. (2) is inde-
pendent of the “bag size”; it has instead been replaced
by the volume and other geometric properties of the
manifold bags. The other term captures the sample
error for individual hypotheses at margin γ. Thus a
natural strategy for a learner is to return a hypothesis
that minimizes the empirical error while maximizing
the margin.

2.3. Learning from Queried Instances

So far we have analyzed the MIL learner as a black
box entity, which can minimize the empirical bag er-
ror by somehow accessing the bags. Since the indi-
vidual bags in our case are low-dimensional manifolds
(with an infinite number of instances), we must also
consider how these bags are accessed by the learner.
Perhaps the simplest approach is to query ρ instances
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uniformly from each bag, thereby “reducing” the prob-
lem to standard MIL (with finite size bags) for which
there are algorithms readily available (e.g. Maron &
Lozano-Perez, 1998; Andrews et al., 2002; Zhang &
Goldman, 2002; Viola et al., 2005). More formally, for
a bag sample Sm, let pi1, . . . , p

i
ρ be ρ independent in-

stance samples drawn uniformly from the (image of)

bag bi ∈ Sm, and let Sm,ρ
def
=
⋃
i,j p

i
j be the set of all

instances. Assuming that our manifold bags have well-
conditioned boundaries, the following theorem relates

the empirical error of sampled bags, êrrγ(h̄r, Sm,ρ)
def
=

1
m

∑m
i=1 11{margin(maxj∈[ρ] h(pij), yi) < γ}, to the

generalization error.

Theorem 4 Let B belong to class (V, n, τ). Let Hr
be λ-Lipschitz smooth (w.r.t. `2-norm), and Hr be
the corresponding bag hypotheses over B. Pick any
0 < δ1, δ2 < 1, then with probability at least 1−δ1−δ2,
over the draw of m bags (Sm) and ρ instances per bag
(Sm,ρ), for all h̄r ∈ Hr we have the following:

Let 1
κ

def
= maxbi∈Sm{cond(∂bi)} (where ∂bi is the

boundary of the manifold bag bi) and set τ1 =
min{ τ32 ,

κ
8 ,

γ
9λ ,

γ
9 }. If

ρ ≥ Ω

((
V/τ c0n

1

)(
n+ ln

( mV
τn1 δ2

)))
,

then

err(h̄r) ≤ êrr2γ(h̄r, Sm,ρ) +

O

(√
n2fat γ

16
(Hr)

m
log2

( V m
γ2τn0

)
+

1

m
ln

1

δ1

)
,

where τ0 = min{ τ2 ,
γ
8 ,

γ
8λ} and c0 is an absolute con-

stant.

Notice the effect of the two key parameters in the
above theorem: the number of training bags, m, and
the number of queried instances per bag, ρ. Increas-
ing either quantity improves generalization – increas-
ing m drives down the error (via the complexity term),
while increasing ρ helps improve the confidence (via
δ2). While ideally we would like both quantities to be
large, increasing these parameters is, of course, com-
putationally burdensome for a standard MIL learner.
Note, however, the difference between m and ρ: in-
creasing m comes at an additional cost of obtaining
extra labels, whereas increasing ρ does not. We would
therefore like an algorithm that can take advantage of
using a large ρ while avoiding computational costs.

2.3.1. Iterative Querying Heuristic

As we saw in the previous section, we would ideally
like to train with a large number of queried instances,

ρ, per training bag. However, this may be impractical
in terms of both speed and memory constraints. Sup-
pose we have access to a black box MIL algorithm A
that can only train with ρ̂ < ρ instances per bag at
once. We propose a procedure called Iterative Query-
ing Heuristic (IQH), described in detail in Algorithm
1 (the main steps are highlighted in blue).

Algorithm 1 Iterative Querying Heuristic (IQH)

Input: Training bags (b1, . . . , bm), labels (y1, . . . , ym),
parameters T , ω and ρ̂

1: Initialize I0
i = ∅, h0

r as any classifier in Hr.
2: for t = 1, . . . , T do
3: Query ω new candidate instances per bag:

Zti := It−1
i ∪ {pi1, . . . , piω} where pij ∼ bi, ∀i.

4: Keep ρ̂ highest scoring inst. using ht−1
r :

Iti ⊂ Zti s.t. |Iti | = ρ̂ and ht−1
r (p) ≥ ht−1

r (p′)
for all p ∈ Iti , p′ ∈ Zti \ Iti .

5: Train h̄tr with the selected instances:
h̄tr ← A({It1 . . . Itm}, {y1 . . . ym}).

6: end for
7: Return hTr and the corresponding h̄Tr

Notice that IQH uses a total of T ρ̂ instances per bag
for training (T iterations times ρ̂ instances per itera-
tion). Thus, setting T ≈ ρ/ρ̂ should achieve perfor-
mance comparable to using ρ instances at once. The
free parameter ω controls how many new instances are
considered in each iteration.

The intuition behind IQH is as follows. For positive
bags, we want to ensure that at least one of the queried
instances is positive; hence we use the current estimate
of the classifier to select the most positive instances.
For negative bags, we know all instances are negative.
In this case we select the instances that are closest to
the decision boundary of our current classifier (corre-
sponding to the most difficult negative instances); the
motivation for this is similar to bootstrapping negative
examples (Felzenszwalb et al., 2009) and some active
learning techniques (Cohn et al., 1994). We then use
these selected instances to find a better classifier.

Thus one expects IQH to take advantage of a large
number of instances per bag, without actually having
to train with all of them at one time.

3. Experiments

Recall that we have shown that the generalization er-
ror is bounded in terms of key geometric properties of
the manifold bags, such as curvature (1/τ) and volume
(V ). Here we will experimentally validate that gener-
alization error does indeed scale with these quantities,
providing an empirical lower bound. Additionally, we
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Figure 3. Synthetic Data Results: Examples of four synthetically generated bags in R2 with (A) low curvature and
(B) high curvature. (C) and (D): Test error scales with the manifold parameters: volume (V ), curvature ( 1

τ
), and

dimension (n).

study how the choice of ρ affects the error, and show
that our Iterative Heuristic (IQH) is effective in reduc-
ing the number of instances needed to train in each
iteration. In all our experiments we use a boosting al-
gorithm for MIL called MILBoost (Viola et al., 2005)
as the black box A; additional experiments with the
MI-SVM algorithm (Andrews et al., 2002) are avail-
able in Appendix C. Both algorithms show similar
trends and we expect the same for any other choice of
A. Note that we use IQH only where specified.

3.1. Synthetic Data

We begin with a carefully designed synthetic dataset,
where we have complete control over the manifold cur-
vature, volume and dimension, and study its effects on
the generalization. The details on how we generate the
dataset are provided in Appendix B; see Figure 3 (A)
and (B) for examples of the generated manifolds.

For the first set of experiments, we study the inter-
play between the volume and curvatue while keeping
the manifold dimension fixed. Here we generated one-
dimensional curves of specified volume (V ) and curva-
ture (1/τ) in R2. We set h∗ to be a vertical hyperplane
and labeled the samples accordingly (see Appendix B).
For training, we used 10 positive and 10 negative bags
with 500 queried instances per bag (forming a good
cover); for testing we used 100 bags. Figure 3 (C)
shows the test error, averaged over 50 trials, as we
vary these parameters. Observe that for a fixed V , as
we increase 1/τ (making the manifolds more curvy)
generalization error goes up.

For the next set of experiments, we want to understand
how manifold dimensionality affects the error. Here
we set the ambient dimension to 10 and varied the
manifold dimension (with all other experiment settings
as before). Figure 3 (D) shows how the test error scales
for different dimensional bags as we vary the volume
(1/τ set to 1).

These results corroborate the general intuition of our
analysis, and give an empirical verification that the
error indeed scales with the geometric properties of a
manifold bag.

3.2. Real Data

In this section we present results on image and audio
datasets. We will see that the generalization behavior
is consistent with our analysis across these different
domains. We also study the effects of varying ρ on gen-
eralization error, and see how using IQH helps achieve
similar error rates with less instances per iteration.

positive bags

pa
d=

16

pa
d=

32

Figure 4. INRIA Heads: for our experiments we have
labeled the heads in the INRIA Pedestrian Dataset (Dalal
& Triggs, 2005). We can construct bags of different vol-
ume by padding the head region. The above figure shows
positive bags for two different amounts of padding.

INRIA Heads. For these experiments we chose the
task of head detection (e.g. positive bags are images
which contain at least one head). We used the INRIA
Pedestrian Dataset (Dalal & Triggs, 2005), which con-
tains both pedestrian and non-pedestrian images, to
create an INRIA Heads dataset as follows. We manu-
ally labeled the location of the head in the pedestrian
images. The images were resized such that the size of
the head is roughly 24× 24 pixels; therefore, instances
in this experiment are image patches of that size. For
each image patch we computed Haar-like features on
various channels as in (Dollár et al., 2009), which cor-
responds to our instance space I.
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Figure 5. Image and Audio Results: three different experiments (columns) – varying padding (volume), number of
queried instances, and number of IQH iterations – on two different datasets (rows); see text for details. Note that x-axes
are in logarithmic scale. All reported results are averages over 5 trials.

Using the ground truth labels, we generated 2472 pos-
itive bags by cropping out the head region with differ-
ent amounts of padding (see Figure 4), which corre-
sponds to changing the volume of the manifold bags.
For example, padding by 6 pixels results in a bag that
is a 30× 30 pixel image. To generate negative bags we
cropped 2000 random patches from the non-pedestrian
images, as well as non-head regions from the pedes-
trian images. Unless otherwise specified, padding was
set to 16.

TIMIT Phonemes. Our other application is in the
audio domain, and is analogous to the image data de-
scribed above. The task here was to detect whether
a particular phoneme is spoken in an audio clip (we
arbitrarily chose the phoneme “s” to be the positive
class). We used the TIMIT dataset (Garofolo et al.,
1993), which contains recordings of over 600 speakers
reading text; the dataset also contains phoneme an-
notations. Bags in this experiment are audio clips,
and instances are audio pieces of length 0.2 seconds
(i.e. this is the size of our sliding window). As in
the image experiments, we had ground truth anno-
tation for instances, and generated bags of various
volumes/lengths by padding. We computed features
as follows: we split each sliding window into 25 mil-
lisecond pieces, computed Mel-frequency cepstral co-
efficients (MFCC) (Davis & Mermelstein, 1980; Ellis,
2005) for each piece, and concatenated them to form a
104 dimensional feature vector for each instance. The
reported padding amounts are in terms of a 5 mil-
lisecond step size (e.g., padding of 8 corresponds to 40
milliseconds of concatenation). Unless otherwise spec-
ified, padding was set to 64.

Results. Our first set of experiments involved sweep-
ing over the amount of padding (corresponding to
varying the volume of bags). We train with a fixed
number of instances per bag, ρ = 4. Results for differ-
ent training set sizes (m) are shown in the first column
of Figure 5. As observed in the synthetic experiments,
we see that increasing the padding (volume) leads to
poorer generalization for both datasets. This corrob-
orates our basic intuition that learning becomes more
difficult with manifolds of larger volume.

In our second set of experiments, the goal was to see
how generalization error is affected by varying the
number of queried instances per bag, which compli-
ments Theorem 4. Results are shown in the middle
column of Figure 5. Observe the interplay between
m and ρ: increasing either, while keeping the other
fixed, drives the error down. Recall, however, that in-
creasing m also requires additional labels while query-
ing more instances per bag does not. The number of
instances indeed has a significant impact on general-
ization – for example, in the audio domain, querying
more instances per bag can improve the error by up to
15%. As per our analysis, these results suggest that to
fully leverage the training data, we must query many
instances per bag. Since training with a large number
of instances can become computationally prohibitive,
this further justifies the Iterative Querying Heuristic
(IQH) described in Section 2.3.1.

Our final set of experiments evaluates the proposed
IQH method (see Algorithm 1). The number of train-
ing bags, m, was fixed to 1024, and the number of
candidate instances per iteration, ω, was fixed to 32
for both datasets. Note that T = 1 corresponds to
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querying instances and training MILBoost once (i.e. no
iterative querying). Results are shown in the right col-
umn of Figure 5. These results show that our heuris-
tic works quite well. Consider the highlighed points in
both plots: using IQH with T = 4 and just 2 instances
per bag during training we are able to achieve compa-
rable test error to the naive method (i.e. T = 1) with
8 instances per bag. Thus, using IQH, we can obtain
a good classifier while needing to use less memory and
computational resources per iteration.

4. Conclusion

We have presented a new formulation of MIL where
bags are manifolds in the instance space, rather than
finite sets of instances. This scenario often appears
in practice, but has thus far been overlooked in the-
oretical analysis and algorithm design. We showed
that manifold geometry is intimately related to PAC-
learnability for this formulation. Our experimental
results corroborate the basic intuition of our analy-
sis. Our iterative querying technique enables us to
achieve good generalization error while needing to use
less memory and computational resources, and should
thus be of immediate practical value. We hope that
our work encourages further research into leveraging
manifold structure in designing MIL algorithms.
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A. Appendix: Proofs

A.1. Proof of Theorem 2

We will show this for n = 1 and N = 2 (the generaliza-
tion to N > n ≥ 1 is immediate). We first construct
2m anchor points p0, . . . , p2m−1 on a section of a circle
in R2 that will serve as a guide on how to place m bags
b1, . . . , bm of dimension n = 1, volume4 ≤ V , and con-
dition number ≤ 1/τ in R2. We will then show that
the class of hyperplanes in R2 can realize all possible
2m labelings of these m bags.

Let V0
def
= min(V/2, π). Define anchor points pi

def
=

(2τ cos( V0i
2τ2m ), 2τ sin( V0i

2τ2m )) for 0 ≤ i ≤ 2m − 1. Ob-
serve that the points pi are on a circle centered at the
origin of radius 2τ in R2.

We use points p0, . . . , p2m−1 as guides to place m bags
b1, . . . , bm in R2 that are contained entirely in the disc
of radius 2τ centered at the origin and pass through the
anchor points as follows. Let kim . . . k

i
1 represent the

binary representation of the number i (0 ≤ i ≤ 2m−1).
Place bag bj such that bj passes through the anchor
point pi, if and only if kij = 1. (see figure below for a
visual example for 3 bags and 8 anchor points). Note
that since, by construction, the arc (the dotted line in
the figure) containing the anchor points has condition
number at most 1/2τ with volume strictly less than
V , bags bj can be made to have condition number at
most 1/τ with volume at most V .

(001)

(011)(100)

(101)

(110)

(111)

(010)

(000)

Figure 6. Placement of arbitrarily smooth bags
along a section of a disk. Three bags (colored blue,
green and red) go around the eight anchor points p0, . . . , p7
in such a way that the hypothesis class of hyperplanes can
realize all possible bag labelings.

It is clear that hyperplanes in R2 can realize any pos-
sible labeling of these m bags. Say, we want some
arbitrary labeling (+1,+1, 0, . . . ,+1). We look at the
number i with the same bit representation. Then a
hyperplane that is tangent to the circle (centered at
the origin and radius 2τ) at the anchor point pi, labels
pi positive, and all other pk’s negative. Note that this
hypothesis will also label exactly those bags bj positive

4Volume of a 1-dimensional manifold is its length.

that are passing through the point pi, and rest of the
bags labeled negative. Thus, realizing the arbitrary
labeling.

A.2. Proof of Theorem 3

Before stating the proof, we give the following useful
fact about manifolds with bounded volume and curva-
ture.

Fact 5 [manifold covers – see Section 2.4 of
(Clarkson, 2007)] Let M ⊂ RN be a compact
n-dimensional manifold with vol(M) ≤ V and
cond(M) ≤ 1/τ . Pick any 0 < ε ≤ τ/2. There exists
an ε-covering of M of size at most 2c0n(V/εn), where
c0 is an absolute constant. That is, there exists C ⊂M
such that |C| ≤ 2c0n(V/εn) with the property: for all
p ∈M , ∃ q ∈ C such that ‖p− q‖ ≤ ε.

Now, for any domain X, real-valued hypothesis class
H ⊂ [0, 1]X , margin γ > 0 and a sample S ⊂ X, define

covγ(H,S)
def
= {C ⊂ H | ∀h ∈ H,∃h′ ∈ C,

max
s∈S
|h(s)− h′(s)| ≤ γ}

as a set of γ-covers of S by H. Let γ-covering number
of H for any integer m > 0 be defined as

N∞(γ,H,m)
def
= max

S⊂X:|S|=m
min

C∈covγ(H,S)
|C|.

We will first relate the covering numbers of Hr and Hr
with the fat-shattering dimension in the following two
lemmas.

Lemma 6 [relating hypothesis cover to the fat-
shattering dimension – see Theorem 12.8 (An-
thony & Bartlett, 1999)] Let H be a set of real
functions from a domain X to the interval [0, 1]. Let
γ > 0. Then for m ≥ fatγ/4(H),

N∞(γ,H,m) < 2
(
4m/γ2

)fatγ/4(H) log 4em
fatγ/4(H)γ .

Lemma 7 [adapted from Lemma 17 of (Sabato
& Tishby, 2009)] Let Hr be an instance hypothesis
class such that each hr ∈ Hr is λ-lipschitz (w.r.t. `2-
norm), and let Hr be the corresponding bag hypothesis
class over B that belongs to the class (V, n, τ). For any
γ > 0 and m ≥ 1, we have

N∞(2γ,Hr,m) ≤ N∞(γ,Hr,m2c0n(V/εn)),

where ε = min{ τ2 ,
γ
2 ,

γ
2λ}, and c0 is an absolute con-

stant.
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Proof. Let S = {b1, . . . , bm} be a set of m manifold
bags. Set ε = min{ τ2 ,

γ
2 ,

γ
2λ}. For each bag bi ∈ S, let

Ci be the smallest ε-cover of (the image of) bi (by Fact
5, we know that |Ci| ≤ 2c0n(V/εn) for some absolute
constant c0).

Define S∪
def
= ∪iCi and let R ∈ covγ(Hr, S∪) be some

γ-cover of S∪. Now, for any hr ∈ Hr, let h̄r ∈ Hr
denote the corresponding bag classifier, and define

h̃r(Ci)
def
= maxc∈Ci hr(c) as the maximum attained by

hr on the sample Ci. Then, since hr is λ-lipschitz
(w.r.t. `2-norm), we have for any bag bi and its corre-
sponding ε-cover Ci,

|h̄r(bi)− h̃r(Ci)| ≤ λε.

It follows that ∀x ∈ S∪: for any hr ∈ Hr and h′r ∈ R
such that |hr(x)− h′r(x)| ≤ γ (and the corresponding
bag classifiers h̄r and h̄′r in Hr),

max
i∈[m]

|h̄r(bi)− h̄′r(bi)|

= max
i∈[m]

|h̄r(bi)− h̃r(Ci) + h̃r(Ci)− h̃′r(Ci)

+ h̃′r(Ci)− h̄′r(bi)|
≤ 2λε+ γ ≤ 2γ.

Also, note that for any hr ∈ Hr and h′r ∈ R such that
|hr(x) − h′r(x)| ≤ γ (x ∈ S∪), we have h̄′r ∈ {h̄r|hr ∈
R} def

= R̄. It follows that for any R ∈ covγ(Hr, S∪),
{h̄r|hr ∈ R} ∈ cov2γ(Hr, S). Thus,

{Hr|Hr ∈ covγ(Hr, S∪)} ⊂ cov2γ(Hr, S).

Hence, we have

N∞(2γ,Hr,m) = max
S⊂B:|S|=m

min
R̄∈cov2γ(Hr,S)

|R̄|

≤ max
S⊂B:|S|=m

min
R̄∈{H̄r|Hr∈covγ(Hr,S∪)}

|R̄|

= max
S⊂B:|S|=m

min
R∈covγ(Hr,S∪)

|R|

= max
S⊂I:|S|=|S∪|m

min
R∈covγ(Hr,S)

|R|

≤ max
S⊂I:|S|=m2c0n(V/εn)

min
R∈covγ(Hr,S)

|R|

= N∞(γ,Hr,m2c0n(V/εn)),

where c0 is an absolute constant.

Now we can relate the empirical error with generaliza-
tion error by noting the following lemma.

Lemma 8 [generalization error bound for real-
valued functions – Theorem 10.1 of (Anthony &
Bartlett, 1999)] Suppose that F is a set of real-valued
functions defined on the domain X. Let D be any prob-
ability distribution on Z = X × {0, 1}, 0 ≤ ε ≤ 1, real
γ > 0 and integer m ≥ 1. Then,

Pr
Sm∼D

[
∃f ∈ F : err(f) ≥ êrrγ(f, Sm) + ε

]
≤ 2N∞

(γ
2
, F, 2m

)
e−ε

2m/8,

where Sm is an i.i.d. sample of size m from D, err(f)
is the error of f with respect to D, and êrrγ(f, Sm) is
the empirical error of f with respect to Sm at margin
γ.

Combining Lemmas 8, 7 and 6, we have (for m ≥
fat γ

16
(Hr)):

Pr
Sm∼DB

[
∃h̄r ∈ Hr : err(h̄r) ≥ êrrγ(h̄r, Sm) + ε

]
≤ 2 N∞

(γ
2
,Hr, 2m

)
e−ε

2m/8

≤ 2 N∞
(γ

4
,Hr,m2c0n(V/τn0 )

)
e−ε

2m/8

≤ 4
(64 · 2c0nV m

γ2τn0

)d log
(

16e2c0nVm
τn0 dγ

)
e−ε

2m/8,

where c0 is an absolute constant, d
def
= fat γ

16
(Hr), and

τ0 = min{ τ2 ,
γ
8 ,

γ
8λ}. For d ≥ 1, the theorem follows.

A.3. Proof of Theorem 4

We start with the following useful observations that
will help in our proof.

Notation: for any two points p and q on a Riemannian
manifold M ,

• let DG(p, q) denote the geodesic distance between
points p and q.

• BG(p, ε)
def
= {p′ ∈ M |DG(p′, p) ≤ ε} denote the

geodesic ball centered at p of radius ε.

Fact 9 [manifold volumes – see Lemma 5.3
(Niyogi et al., 2006)] Let M ⊂ RN be a compact
n-dimensional manifold with cond(M) ≤ 1/τ . Pick

any p ∈ M and let Aε
def
= M ∩ B(p, ε), where B(p, ε)

is a Euclidean ball in RN centered at p of radius ε. If
Aε does not contain any boundary points of M , then
vol(Aε) ≥ (cos(arcsin(ε/2τ)))nvol(Bnε ), where Bnε is
a Euclidean ball in Rn of radius ε. In particular, not-
ing that vol(Bnε ) ≥ εc0n for some absolute constant
c0, if ε ≤ τ , we have vol(Aε) ≥ εc0n.



Multiple Instance Learning with Manifold Bags

Fact 10 [relating geodesic distances to ambi-
ent Euclidean distances – see Prop. 6.3 (Niyogi
et al., 2006)] Let M ⊂ RN be a compact mani-
fold with cond(M) ≤ 1/τ . If p, q ∈ M such that
‖p− q‖ ≤ τ

2 , then DG(p, q) ≤ 2‖p− q‖.

Lemma 11 Let M ⊂ RN be a compact n-dimensional
manifold with vol(M) ≤ V and cond(M) ≤ 1/τ .
Let µ(M) denote the uniform probability measure over

M . Define F(M, ε)
def
= {BG(p, ε) : p ∈M and BG(p, ε)

contains no points from the boundary of M}, that is,
the set of all geodesic balls of radius ε that are con-
tained entirely in the interior of M . Let τ0 ≤ τ and
ρ ≥ 1. Let p1, . . . , pρ be ρ independent draws from
µ(M). Then,

Pr
p1,...,pρ∼µ(M)

[
∃F ∈ F(M, τ0) : ∀i, pi /∈ F

]
≤ 2c0n(V/τn0 )e−ρ(τ

c0n
0 /V ),

where c0 is an absolute constant.

Proof. Let M◦ denote the interior of M (i.e., it
contains all points of M that are not at the bound-
ary). Let q0 ∈ M be any fixed point such that
BG(q0,

τ0
2 ) ⊂ M◦. Then, by Facts 9 and 10 we know

that vol(BG(q0,
τ0
2 )) ≥ τ c0n

0 . Observing that M has
volume at most V , we immediately get that BG(q0,

τ0
2 )

occupies at least τ c0n
0 /V fraction of M . Thus

Pr
p1,...,pρ∼µ(M)

[
∀i, pi /∈ BG

(
q0,

τ0
2

)]
≤
(

1− τ c0n
0

V

)ρ
.

Now, let C ⊂ M be a ( τ02 )-geodesic covering of M .
Using Facts 5 and 10, we can have |C| ≤ 2c1n(V/τn0 )
(where c1 is an absolute constant). Define C ′ ⊂ C as
the set {c ∈ C : BG(c, τ02 ) ⊂ M◦}. Then by union
bounding over points in C ′, we have

Pr
p1,...,pρ∼µ(M)

[
∃c ∈ C ′ : ∀i, pi /∈ BG

(
c,
τ0
2

)]
≤ |C ′|

(
1− τ c0n

0

V

)ρ
.

Equivalently we can say that, with probability at least
1 − |C ′|e−τ

c0n
0 ρ/V , for all c′ ∈ C ′, there exists pi ∈

{p1, . . . , pρ} such that pi ∈ BG(c′, τ02 ).

Now, pick any F ∈ F(M, τ0), and let q ∈M denote its
center (i.e., q such that BG(q, τ0) = F ). Then since C
is a ( τ02 )-geodesic cover of M , there exists c ∈ C such
that DG(q, c) ≤ τ0/2. Also, note that c belongs to
the set C ′, since BG(c, τ0/2) ⊂ BG(q, τ0) = F ⊂ M◦.

Thus with probability ≥ 1−|C ′|e−τ
c0n
0 ρ/V , there exists

pi such that

pi ∈ BG(c, τ0/2) ⊂ BG(q, τ0) = F.

Observe that since the choice of F was arbitrary, we
have that for any F ∈ F (uniformly), there exists pi ∈
{p1, . . . , pρ} such that pi ∈ F . The lemma follows.

Lemma 12 Let B belong to class (V, n, τ). Fix a sam-

ple of size m {b1, . . . , bm}
def
= Sm ⊂ B, and let ∂bi

denote the boundary of the manifold bag bi ∈ Sm. De-

fine 1
κ

def
= maxbi∈Sm{cond(∂bi)}. Now let pi1, . . . , p

i
ρ be

the ρ independent instances drawn uniformly from (the
image of) bi. Let Hr be a λ-lipschitz (w.r.t. `2-norm)
hypothesis class. Then, for any ε ≤ min{ τ32 ,

κ
8 },

Pr
[
∃hr ∈ Hr,∃bi ∈ Sm : |h̄r(bi)−max

j∈[ρ]
hr(bi(p

i
j))| > 9ελ

]
≤ m2c0n(V/εn)e−ρε

c0n/V ,

where c0 is an absolute constant.

Proof. Fix a bag bi ∈ Sm, and let M denote the
manifold bi. Quickly note that cond(M) ≤ 1/τ .

Define M2ε
def
= {p ∈ M : minq∈∂M DG(p, q) ≥ 2ε}. By

recalling that cond(∂M) ≤ 1
κ and ε ≤ min{ τ32 ,

κ
8 }, it

follows that i) M2ε is non-empty, ii) ∀x ∈ M \M2ε,
miny∈M2ε

DG(x, y) ≤ 8ε.

Observe that for all p ∈M2ε, BG(p, ε) is in the interior
of M . Thus by applying Lemma 11, we have:

Pr
p1,...,pρ∼µ(M)

[
∃p ∈M2ε : ∀i, pi /∈ BG(p, ε)

]
≤ 2c0n(V/εn)e−ρ(ε

c0n/V ),

where µ(M) denotes the uniform probability measure
on M .

Now for any hr ∈ Hr, let x∗
def
= arg maxp∈M hr(p).

Then with the same failure probability, we have
that there exists some pi ∈ {p1, . . . , pρ} such that
DG(pi, x

∗) ≤ 9ε. To see this, consider:

if x∗ ∈ M2ε, DG(x∗, pi) ≤ ε (for some pi ∈
{p1, . . . , pρ}), otherwise if x∗ ∈ M \M2ε, then exists
q ∈M2ε such that DG(x∗, q) ≤ 8ε.

Noting that hr is λ-Lipschitz, and union bounding over
m bags, the lemma follows.

By Theorem 3 we have for any 0 < γ < 1, with prob-
ability at least 1 − δ1 over the sample Sm, for every
h̄r ∈ Hr:

err(h̄r) ≤ êrrγ(h̄r, Sm) +

O

(√
n2fat γ

16
(Hr)

m
log2

( V m
γ2τn0

)
+

1

m
ln

1

δ1

)
,

where τ0 = min{ τ2 ,
γ
8 ,

γ
8λ}.
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Figure 7. Audio Results using MI-SVM: three different experiments (columns) – varying padding (volume), number
of queried instances, and number of IQH iterations – on two different datasets (rows); see text for details. Note that
x-axes are in logarithmic scale. All reported results are averages over 5 trials.

By applying Lemma 12 (with ε set to
τ1 = min{ τ32 ,

κ
8 ,

γ
9λ ,

γ
9 }), it follows that if

ρ ≥ Ω
(
(V/τ c0n

1 )
(
n + ln

(
mV
τn1 δ2

)))
, then with prob-

ability 1− δ2: êrrγ(h̄r, Sm) ≤ êrr2γ(h̄r, Sm,ρ), yielding
the theorem.

B. Appendix: Synthetic Dataset
Generation

Figure 8. Synthetic bags. An example of a synthetic 1-
dimensional manifold of a specified volume (length) V and
curvature 1/τ generated by our procedure.

We generate a 1-dimensional manifold (in R2) of cur-
vature 1/τ and volume (length) V as follows (see also
Figure 8).

1. Pick a circle with radius τ , a point p on the circle,
and a random angle θ (less than π).

2. Choose a direction (either clockwise or counter-
clockwise) and trace out an arc of length θτ start-
ing at p and ending at point, say, q.

3. Now pick another circle of the same radius τ that
is tangent to the original circle at the point q.

4. Repeat the process of tracing out another arc on
the new circle, starting at point q and going in
the reverse direction.

5. Terminate this process once we have a manifold
of volume V .

Notice that this procedure can potentially result in a
curve that intersects itself or has the condition number
less than 1/τ . If this happens, we simply reject such
a curve and generate another random curve until we
have a well-conditioned manifold.

To generate a higher dimensional manifold, we extend
our 1-dimensional manifold (M ⊂ R2) in the extra di-
mensions by taking a Cartesian product with a cube:
M × [0, 1]n−1. Notice that the “cube”-extension does
not alter the condition number (i.e. it remains 1/τ).
Since the resulting manifold fills up only n+ 1 dimen-
sions, we randomly rotate it the ambient space.

Now, to label the generated manifolds positive and
negative, we first fix h∗ to be a vertical hyperplane
(w.r.t. the first coordinate) in RN . To label a manifold
b negative, we translate it such that the entire manifold
lies in the negative region induced by h∗. And to label
it positive, we translate it such that a part of b lies in
the positive region induced by h∗.

C. Appendix: Additional Experiments
with MI-SVM

We repeated the suite of experiments on the TIMIT
dataset with the MI-SVM algorithm (Andrews et al.,
2002) (implemented using the LIBSVM package5).
Figure 7 shows the results. Upon comparison with
the MILBoost results in Figure 5 we observe that the
general trends are quite similar. This reinforces the
fact that our results should generalize to most MIL
algorithms.

5http://www.csie.ntu.edu.tw/~cjlin/libsvm/


