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Abstract. Multiple Instance Learning (MIL) provides a framework for
training a discriminative classifier from data with ambiguous labels. This
framework is well suited for the task of learning object classifiers from
weakly labeled image data, where only the presence of an object in an
image is known, but not its location. Some recent work has explored
the application of MIL algorithms to the tasks of image categorization
and natural scene classification. In this paper we extend these ideas in a
framework that uses MIL to recognize and localize objects in images. To
achieve this we employ state of the art image descriptors and multiple
stable segmentations. These components, combined with a powerful MIL
algorithm, form our object recognition system called MILSS. We show
highly competitive object categorization results on the Caltech dataset.
To evaluate the performance of our algorithm further, we introduce the
challenging Landmarks-18 dataset, a collection of photographs of famous
landmarks from around the world. The results on this new dataset show
the great potential of our proposed algorithm.

1 Introduction

The goal of object categorization is to locate and identify instances of an object
category within an image. This task is challenging in real world scenes since
objects may vary in scale, position, and viewpoint; in addition, they may be
surrounded by background clutter, occluded by other objects, and obscured by
poor image quality. To model these sources of variability, traditional approaches
to object categorization require large labeled data sets of fully annotated training
images. Typical annotations in these “fully” labeled data sets provide masks or
bounding boxes that specify the locations, scales, and orientations of objects in
each training image. Though extremely valuable, this information is prone to
error and is expensive to obtain. Without this information, however, traditional
approaches to object categorization tend to learn spurious models of background
artifacts, leading to lower accuracy during testing.

Some approaches for object categorization have successfully learned object
models from weakly labeled data [1–5]. Weakly labeled training examples indi-
cate which objects of interest are present in training images without specifying
the pixels that are associated with them. From weakly labeled examples, the
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existing methods use standard techniques in statistical learning to model the
essence of each category. Popular approaches include part-based models [1, 6, 7],
region based methods [2, 5] and latent models such as pLSA and LDA, with bag
of visual words [3, 4, 8]. While they excel at exploiting correlations between dif-
ferent image patches, they suffer from computationally expensive inference and
background noise that is learned as part of the category model.

Recently, Multiple Instance Learning (MIL) models have been applied to
image categorization [9, 10]. MIL permits weakly labeled images for training,
but avoids the shortcomings of the methods mentioned above. In particular,
MIL trains a discriminative classifier, rather than a generative model, which
avoids complex inference procedures, and usually results in higher recognition
accuracy. Although some of the previous works have applied MIL algorithms to
the problem of object categorization, the focus has been on classifying images
rather than localizing instances of objects in them.

Following this promising line of work we extend the current frameworks for
MIL-based image categorization by adding object localization capabilities and
improving image categorization accuracy. The main contribution of this paper is
a novel object categorization framework that localizes objects in cluttered, real
world scenes. Our method incorporates multiple stable segmentations and Bag-
of-Features (BoF) image representation into a MIL framework, see Fig. 1 for
an illustration. We demonstrate the efficiency and accuracy of our framework
on two databases that present significant intra-class variation: Caltech 4 [11]
and a landmark image database, Landmarks-18. The Caltech dataset, although
highly popular in the computer vision community, is a rather artificial dataset,
where objects often appear in isolation and with uniform backgrounds. The
Landmarks-18 dataset on the other hand, is taken directly from common web
albums and contains instances of popular landmarks in cluttered scenes with
variable viewpoint, weather, and illumination (see Fig. 3).

IMAGE BAG OF MULTIPLE STABLE SEGMENTS
MULTIPLE INSTANCE 

LEARNING MODEL
OBJECT CATEGORIZATION

Fig. 1. An input image containing an airplane is processed through a segmentation-
based object recognition engine obtaining a collection of stable segments. The bag
of segments is represented as bags of features and then fed into the MIL algorithm.
Finally, the model classifies each segment, localizing the object in the image.

2 Related Work

2.1 Multiple Instance Learning

The MIL problem was first introduced by Dietterich et al. [12] for the problem
of drug discovery. In this domain it is desired to predict properties of a drug
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molecule using the molecule’s shape as an input to the classifier. Each molecule,
however, can take on multiple shapes, and it is not known during training which
shape is responsible for certain properties of the training molecules. Formally,
traditional supervised learning requires training data {(x1, y1), ..., (xN , yN )}, xi ∈
X , yi ∈ Y where X is the input space and Y is the output space. On the other
hand, MIL is able to learn from training data of the form {(X1, y1), ..., (XN , yN )},
Xi = {xi1, xi2...}, xij ∈ X , yi ∈ Y. For example, in the drug discovery problem
each Xi is a molecule, and each xij is one particular shape of that molecule.
The MIL problem is defined only for binary classification, so we will assume
that Y = {1, 0}. In this setting Xi is an unordered set of inputs (often called
a “bag”), and the bag label yi follows the rule yi = maxj(yij). Notice that al-
though true instance labels yij are assumed to exist, the learning algorithm does
not have access to them during training. The goal of a MIL algorithm is then
to learn a classifier function H : x → {0, 1}, that acts on instances. Various al-
gorithms have been proposed for solving this problem [12–14], and in this paper
we chose the MilBoost algorithm by Viola et al. [14].

2.2 MIL and Image Categorization

In recent years MIL algorithms have attracted the attention of the computer
vision community because they provide a way of training classifiers with weakly
labeled data. These models have tried to address various problems such as scene
classification, image annotation, and image and object categorization. In nat-
ural scene classification, several models have successfully classified images into
predefined semantic concepts (categories) using MIL. For example, Maron et al.

applied the Diverse Density (DD) algorithm to the problem of natural scene clas-
sification [15]. Trying to solve the same problem, Zhou [16] introduced MIML,
where each training example is associated with not only multiple instances but
also multiple class labels. Both methods consider classification on a bag (image)
level only, and do not take advantage of the instance classifier returned by a
MIL algorithm. Similarly, in image annotation, MI-SVM [17] and ASVM-MIL
[18] algorithms use variations of the popular SVM algorithm modified to solve
MIL. In the problem of image categorization many MIL approaches have been
shown to outperform traditional supervised object categorization models. The
DD-SVM [19] model uses the DD algorithm to select prototypes and an SVM
to classify bags in the prototypes’ space. Bi et al. [20] and MILES [9] embed
bags into a feature space defined by instances and use a 1-norm SVM to con-
struct bag classifiers. Recently, the results of ConMIL [10] showed that modeling
interdependencies between instances can improve accuracy in instance and bag
classification.

With respect to object categorization, ConMIL and MILES have achieved
competitive results relative to traditional approaches. In these methods, object
categorization is framed as binary classification which tries to separate object
instances from background clutter. Although these algorithms achieve good per-
formance on an image level, their models often capture parts of the background
in the positive images. While the backgrounds of positive images provide clues in
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image classification (e.g. an airplane will often co-occur with a sky background),
models that capture this information would have trouble in correctly localizing
the objects of interest.

3 Multiple Instance Learning using Stable Segmentations

The problem of learning an object classifier from weakly labeled data can be
elegantly framed as multiple instance learning. During training it is known for
each image whether a certain object category is present, but the exact location
of that object is unknown. If we split an image Ii into J multiple regions or
segments {si1, si2..., siJ}, we can assume that one of the segments contains the
object of interest (we will discuss different strategies for doing this shortly). For
each image we are given a category label yi = {c1, c2, ..., cC}; however, since
the MIL problem is defined only for binary classification, we will train our
classifiers in a one versus all manner. If we define yik ∈ 1(yi = ck) to be a binary
label indicating the presence of category k in image i, we can train C different
classifiers. For each category k, we train a classifier Hk : s → {1, 0} using the
training data set {(I1, yik), ...}. In practice, since our problem is multi-class it is
more useful for us to also obtain the probability of the segment containing an
object category k, p(ck|s). The boosting algorithm for MIL developed in [14]
provides us with an effective way of learning these functions, and in the section
below we briefly review this algorithm.

3.1 MilBoost

The MilBoost algorithm developed by Viola et al. in [14] uses the gradient
boosting framework of Friedman [21]. The classifier learned by a boosting frame-

work has the form Hk(s) =
∑T

t=1 αk
t hk

t (s) where each hk
t is a weak classifier and

αk
t is a scalar weight. We use a simple decision stump as the weak classifier as is

done in much of the boosting literature [22, 23]3. To get a binary label from this
classifier we could use sign(Hk), but recall that we would also like to retrieve
a probability. Instead, we use the sigmoid function σ(x) = 1

1+e−x to define this
probability as follows:

p(ck|s) = σ
(

T
∑

t=1

αk
t hk

t (s)
)

. (1)

The loss function we optimize is the binomial log likelihood over bags:

Lk(Hk) = −
∑

i

(

yik log(pik) + (1 − yik) log(1 − pik)
)

, (2)

where pik = p(ck|Ii) is the probability that image i contains an object from
category k. Note that it is impossible to compute the likelihood over segments

3 Using a decision stump as a weak classifier also results in feature selection during
training.
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because the labels for these are unknown during training. Finally, we need to
define the image probability pik in terms of the probabilities of its segments. Ide-
ally we would define this as pik = maxj p(ck|sij). Since the boosting framework
uses gradient descent to learn, however, this definition would cause problems
due to the non differentiable max operator. Instead Viola et al. suggest using
the Noisy-OR model as follows:

p(ck|Ii) = 1 −
∏

j

(

1 − p(ck|sij)
)

. (3)

Having all of these terms defined, we can now use the gradient boosting frame-
work to learn each weak classifier hk

t in a greedy fashion. Given an incomplete

classifier Hk
t−1(s) =

∑t−1
l=1 αk

l hk
l (s) we seek to add one more weak classifier and

its corresponding weight to optimize the overall loss function:

(αk
t , hk

t ) = argmin
(h,α)

(

Lk(Hk
t−1 + αh)

)

. (4)

To achieve this, Viola et al. follow Friedman’s suggestion of viewing the boosting
procedure as a gradient descent in function space (where the value of Hk for every
training instance corresponds to a dimension). In this sense, we would like to
add a weak classifier hk

t that is along the direction of the gradient

wij =
∂Lk

Hk(sij)

∣

∣

∣

∣

Hk
t−1

. (5)

Unfortunately, we cannot move in arbitrary directions in function space because
we are limited by the class of weak learners we have chosen. Therefore, we would
like to choose a weak classifier which moves in a direction that is as close as
possible to this gradient:

hk
t = argmin

h

∑

ij

h(sij)wij . (6)

Finally, we can determine αt by doing a simple line search.

3.2 Region Extraction

In MIL an image is divided into segments or regions and each region is rep-
resented by a high dimensional feature vector. Existing MIL-based approaches
have adopted a variety of techniques for partitioning an image, including blocks,
patches and single segmentations. One simple convention is to use a single non
overlapping grid of 4×4 blocks [9, 19, 20]. In order to obtain representative re-
gions of the possible objects in the scene, this block segmentation is followed
by K-means clustering of the feature vectors extracted from the blocks. The
number of clusters depends on the the number of objects that typically appear
in the scene, introducing a model order selection problem. Other MIL-based
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approaches [9, 10] extract salient regions using Kadir’s detector [24]. This allows
them to compare their object categorization results to non-MIL-based methods.
Salient regions are detected over different locations and scales and then cropped
from the image and rescaled into an image patch of size 11×11 pixels. Partition-
ing an image into blocks or patches often breaks an object into several pieces or
puts different objects into a single patch. Alternatively, image segmentation is a
way to decompose an image into a collection of regions that hopefully correspond
to objects. The methods in [15, 17] use the blobworld representation of [25] in
which an image is segmented into a set of regions, each characterized by color,
texture and shape descriptors. Other aproaches [10, 18] obtain meaningful image
regions using JSEG [26] or NCut [27] segmentation algorithms. Each image is
typically segmented into ten or fewer regions, and only segments bigger than a
certain threshold are kept. However, as described in [28], there usually does not
exist a single correct segmentation of an image, but rather a collection of poten-
tially meaningful image segmentations. Thus, using just a single segmentation
may hinder recognition due to splitting or merging errors.

The idea of using multiple segmentation has recently emerged [3, 5, 29–31] in
the area of object recognition. Segmentations are computed resulting in a bag
(or soup) of segments, with the hope that a subset of them will capture adequate
object boundaries. Multiple stable segmentations have been shown to produce
competitive results in object categorization [29, 32]. In this work we advocate
their use as a substrate for MIL-based object categorization.

3.3 Multiple Stable Segmentations

In order to extract more adequate image regions for our system, we compute
multiple stable segmentations [28]. The method of multiple stable segmentations
uses stability as a heuristic for a particular set of parameters, cue weightings
and a model order. For each choice of parameters for cue combinations p and
number of segments q, the image is segmented using Normalized Cuts [27, 33].
The segmentation is considered stable if small perturbations of the image do
not yield substantial changes in the segmentation. The image is perturbed and
segmented T times and the following score is evaluated:

Φ(q, p) =
1

n − n
q





n
∑

i=1

T
∑

j=1

δij −
n

q



 , where δij =

{

1 if i =j

0 otherwise
. (7)

Here n is the number of pixels and δij is equal to 1 if the i-th pixel is mapped to a
different segment in the j-th perturbed segmentation, and zero otherwise. Thus
Φ is a properly normalized4 measure of the probability of a pixel to change label
due to a perturbation of the image. Segmentations with a high stability score are
retained. Notice that, in general, there may exist several stable segmentations
for an image.

4 In particular Φ ranges in [0, 1] and it is not biased towards a particular value of q.
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3.4 MILSS Framework

Our Multiple Instance Learning framework using multiple Stable Segmentations
(MILSS) presents a novel approach for object categorization that combines pop-
ular elements from previous work in object recognition with a MIL framework.
Multiple stable segmentations [28] provide a spatial grouping of pixels into re-
gions that increase the chances of extracting meaningful segments for MIL. They
are memory efficient compared to extracting a large number of patches and they
provide localization capability to our framework.

In order to improve instance classification, we use the bag of features model
(BoF) [11] to capture appearance information. Recently, the BoF image rep-
resentation has found widespread application in object categorization due to
its simplicity and efficiency. To represent an image segment as a BoF, we first
detect salient regions in the segment and compute a feature vector for each re-
gion. These feature vectors are then mapped to a vocabulary of “visual words”
which are computed using vector quantization. The BoF representation of an
image segment is then a histogram of these visual words (often referred to as a
signature).

Input
Image

Multiple
Stable

Segments

Random 
Sampling

SIFT

BoF
Segment

Signatures

MIL Bag MILBoost Instance
Classification

Localization

Fig. 2. An object is recognized by the MILSS framework. An input image containing a
face is partitioned into a collection of stable segments. Then a BoF approach computes
SIFT [34] descriptors in a random fashion on each segment. A signature is computed
for each segment and the resulting bag of signatures is fed into the MilBoost model.
MilBoost classifies each signature (instance) and the bag, resulting in the localization
of the face within the image and the classification of the image as a whole.

We combine multiple segmentations and the BoF representation with the
MilBoost framework [14] which performs feature selection during training and
allows rapid segment and image classification at runtime. Figure 2 shows each
step of our categorization model. Next we address, in detail, how the image
segments and their signatures are used for object categorization.

Classification. Given an image Ii we compute q stable segmentations resulting
in multiple segments {si1, si2..., siJ}. For each segment sij we compute a BoF
signature, with each signature corresponds to an instance of the bag. A segment
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sij is classified as follows:

yij = argmax
k

p(ck|sij), (8)

where p(ck|sij) is the probability of the segment sij belonging to the category
ck, defined by Eq. 1. We classify an image Ii as proposed by [29]:

yi = argmax
k

J
∑

j=1

p(ck|sij). (9)

Localization. The task of object localization generally corresponds to plac-
ing a bounding box, or preferably the actual object outline, around the object
within the image. Since our framework uses segments for categorization, we uti-
lize segment boundaries that yield highest recognition score in order to describe
object locations [1]. For evaluating our localization performance for an image Ii

classified overall as yi and segment labels yij , we look for segments with labels
such that yij = yi. Then we check for overlapping segments and return the first
n unique segment boundaries, with n ≪ J .

4 Experimental Results

To evaluate the MILSS framework, we compare our approach to the state-of-the-
art methods in object categorization. Existing MIL-based approaches often use
the COREL dataset to evaluate their models for image categorization. However,
since we concentrate on object categorization, the performance of our approach
is evaluated on Caltech 4 and a new dataset Landmarks-18.

4.1 Caltech 4 Dataset

Caltech 4 [11] is a well established dataset and is a standard benchmark for
object categorization. Although simple, we utilize this dataset as a means of
comparison with Mil-based methods. Following the experimental set up of [9,
10], we perform a category versus background classification. Table 1(a) presents
the results of categorization accuracy for our method. Results are compared to
existing MIL-based image categorization models [9, 10] and a non-MIL-based
approach of [6]. The presented results are competitive with the rest of the al-
gorithms. The average categorization accuracy for MILSS as well as ConMIL is
98%; while MILES is 97% and Bar-Hillel et al.’s algorithm is 93%. Note that the
highest performance is achieved in the Airplanes category given that the stable
segmentations were able to separate the background from the objects accurately.
In a second experiment, we include the Leopard class for comparing our method
to existing algorithms [8, 11] in a multi-class setting.

Table 1(b) reports accuracy for multi-class object categorization. Instead of
considering a background category, images belonging to each category acted as
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Table 1. (a) Comparison of categorization results between our framework, MIL-based
models [9, 10] and a traditional object categorization approach [6] for Caltech 4 cate-
gories. Results in bold indicate the highest performance for each category. (b) MILSS
Confusion matrix between the four categories for multi-class object recognition.

Airplanes Cars Faces Motorbikes
Training data 400 400 218 400

MILSS 1 .971 .976 .972
ConMIL [10] .992 .984 .976 .987

MILES [9] .980 .945 .995 .967
Bar-Hillel [6] .897 .977 .917 .931

(a)

A F L M
Training data 400 218 100 400

Airplanes (A) .98 .00 .01 .01
Faces (F) .01 .99 .00 .00

Leopards (L) .05 .01 .93 .01
Motorbikes (M) .01 .00 .01 .97

(b)

negative examples for models trained on the other categories. We compare our
method to existing non-MIL-based object recognition frameworks: the depen-
dent Hierarchical Dirichlet process (DHDP) [8] and constellation of parts model
[1]. As shown in Table 2(a), MILSS reports an average recognition accuracy of
97% while DHDP reports 98%. Looking closely at the categories, MILSS outper-
forms DHDP in three out of four of them. The Leopards category seems to be
the most challenging for our framework, since it contains fewer images than the
rest of the categories (100 for training and 100 for testing). In order to improve
these results we could easily augment our training set with images from public
repositories, as manual labeling is not required.

Table 2. (a) Results of multiple object categorization models for four Caltech cate-
gories. We compare our results to those of non MIL-based models. Results in bold

indicate the highest performance for each category. (b) Average localization results of
MILSS for four categories of Caltech.

Airplanes Faces Leopards Motorbikes Mean
Training data 400 218 100 400

MILSS .977 .986 .927 .971 0.965
DHDP [8] .961 .978 1 .967 0.976
Fergus [1] .888 .862 - .977 0.909

(a)

MILSS

Airplanes .932
Faces .902

Leopards .891
Motorbikes .859

Mean .896

(b)

In a multi-class setting, localization accuracy of MILSS is 90% on the Caltech
4 dataset. Our localization results are presented in detail in Table 2 (b). To
quantify the accuracy of object localization we adopt the methodology of [1] and

consider the overlap α =
B∩Bgt

B∪Bgt
. Note that our method may be at a disadvantage

in cases where the objects’ contour areas B are smaller than the ground truth
bounding box Bgt; thus it is difficult to make a direct comparison with the results
in [1]. Since our method localizes objects using segment boundaries, the location
and extent of the object is captured more precisely than those with bounding
boxes, see Fig. 6.

4.2 Landmark Database

With the increasing popularity of digital photography and the user’s desire to
share their pictures in web albums, recognition of destinations and landmarks
has become an interesting problem. Recognizing objects in real world images is
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a challenging task, as images are presented at a variety of viewpoints, scales, and
illuminations; noise, background clutter, and occlusions also make the problem
more difficult. Since photo-sharing sites are a vast resource of weakly labeled
image data, we easily gather large datasets to evaluate our framework.

Fig. 3. Landmarks-18 Dataset. Two examples are shown per landmark and each row
shows 9 categories. Top row: Arc de Triomphe, Ayres Rock, Bellsouth Building, Bran-
denburg Gate, Buckingham Palace, Burjal Arab, CN Tower, Centre Pompidou and
Chrysler Building. Bottom row: Church Savior Spilled Blood, Eiffel Tower, Liberty
Bell, Lincoln Memorial, Lincoln Memorial Statue, London Tower Bridge, Space Needle,
Sydney Opera House and Taipei 101.

In this paper we introduce a new dataset called Landmarks-18, consisting of
18 different categories of landmarks, provided by Google Research and collected
from public web albums. Landmarks-18 captures much more significant intra-
class variability than standard benchmark datasets for object recognition. Figure
3 demonstrates the diversity of landmarks in the dataset while Fig. 5(b) provides
the statistics of the dataset.

Here we performed two different multi-class categorization experiments on
Landmarks-18. Each experiment considers 10 different categories, where images
in each category were divided randomly into 80%/20% for training and testing
respectively. Experiments were performed with 5-fold cross validation to obtain
statistically relevant average categorization results. Figure 4 shows confusion
matrices for both experiments. The results show that Landmarks-18 is much
more difficult for categorization than Caltech 4, due to the challenging char-
acteristics of its images and the larger number of classes. Despite this, MILSS
achieves high categorization accuracy in both experiments. The outcome of both
experiments indicate that Eiffel Tower, Taipei101, and Bellsouth Building are
the most challenging categories. The main source of low recognition accuracy
isnbetween visually similar categories such as Bellsouth Building vs. Chrysler
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Building. For this dataset we were unable to compare our results to other MIL-
based categorization systems as code was not available.

.81 .00 .01 .03 .05 .00 .05 .06 .00 .00

.02 .67 .04 .00 .04 .02 .01 .02 .10 .07

.02 .01 .48 .04 .06 .05 .05 .13 .05 .11

.03 .00 .02 .81 .06 .00 .02 .04 .01 .01

.01 .00 .03 .02 .85 .00 .02 .04 .01 .01

.01 .01 .01 .02 .01 .87 .02 .02 .02 .01

.03 .00 .01 .02 .01 .04 .70 .08 .09 .02

.06 .00 .15 .02 .06 .01 .04 .56 .02 .08

.02 .00 .08 .01 .02 .06 .07 .07 .64 .03

.03 .00 .13 .03 .11 .03 .05 .10 .04 .48

ArcdeTriomphe

AyersRock

EiffelTower

LibertyBell

LincolnMemorial

LincolnMemorial Statue

LondonTowerBridge

SpaceNeedle

SydneyOperaHouse

Taipei101

ArcdeTriomphe

AyersRock

EiffelTower

LibertyBell

LincolnMemorial

LincolnMemorial Statue

LondonTowerBridge

SpaceNeedle

SydneyOperaHouse

Taipei101

Landmarks Experiment 1: Average Acc = 0.691810

.92 .00 .01 .02 .01 .02 .00 .01 .01 .00

.03 .82 .00 .00 .01 .04 .01 .00 .07 .00

.12 .00 .25 .09 .02 .10 .13 .00 .25 .05

.05 .00 .01 .88 .02 .01 .00 .00 .02 .00

.04 .00 .00 .21 .59 .04 .04 .00 .07 .02

.04 .01 .05 .02 .01 .66 .11 .00 .09 .02

.05 .00 .02 .03 .00 .12 .63 .00 .14 .01

.07 .00 .00 .00 .00 .00 .05 .86 .00 .02

.02 .00 .02 .05 .00 .04 .09 .00 .77 .02

.11 .02 .02 .03 .01 .05 .13 .00 .08 .56

ArcdeTriomphe

AyersRock

BellsouthBuilding

BrandenburgGate

BuckinghamPalace

BurjalArab Statue

CNTower

CentrePompidou

ChryslerBuilding

ChurchSavior

ArcdeTriomphe

AyersRock

BellsouthBuilding

BrandenburgGate

BuckinghamPalace

BurjalArab Statue

CNTower

CentrePompidou

ChryslerBuilding

ChurchSavior

Landmarks Experiment 2: Average Acc = 0.709889

(a) (b)

Fig. 4. Confusion matrices of categorization accuracy for the Landmark-18 dataset.
(a) Experiment 1; (b) Experiment 2.

To evaluate the importance of the multiple stable segmentations within MILSS,
we also experimented with two different single segmentations (q = 4 and q = 6)
using Normalized Cuts [27]. Figure 5 (a) shows the average categorization ac-
curacy for each method using 5-fold cross validation. With multiple stable seg-
mentations categorization performance is improved in almost all categories. The
average categorization accuracy for q = 4, 6 and multiple segmentations is 58.3%,
61.8% and 71.0% respectively. The total number of segmentations extracted from
an image plays an important role in categorization accuracy. As noted by others,
as the number of segments per image increases, so does the chance of having a
segment that represents the object accurately [29, 30]. We believe that multiple
stable segmentations provide a way of gathering the most meaningful segments,
as is reflected in our results.

(a)

Category n Category n

ArcdeTriomphe 146 ChurchSavior 109
AyresRock 113 EiffelTower 194

BellsouthBuild 107 LibertyBell 175
BrandenburgG 166 LincolnMem 198
BuckinghamP 87 LincolnMStatue 200

BurjalArab 158 LondonTower 195
CNTower 160 SydneyOHouse 186

CPompidou 71 SpaceNeedle 219
ChryslerBuild 204 Taipei101 176

(b)

Fig. 5. (a) Three different types of region extraction: two single segmentations with
number of segments equal to 4 and 6, and multiple stable segmentations. The average
categorization accuracy for q = 4, 6 and multiple segmentations is 58.3%, 61.8% and
71.0% respectively. Multiple stable segmentations outperform (on average) all the other
methods. (b) shows the statistics of Landmarks-18 database.
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4.3 Implementation Details

The stability based image segmentation was implemented using Normalized Cuts
[27, 35]. Five iterations, combining brightness and texture cues with p ={0.4, 0.5,

0.6, 0.7} were used to sample the parameter space. For the categorization exper-
iments done for Caltech and Landmarks-18, we computed 5 different segmen-
tations with q = 2, . . . , 6 with a total of 20 segments per image. Computing a
single segmentation takes about 20-30 seconds per image. For the BoF model we
computed 5000 random SIFT [34] features at multiple scales (from 12 pixels up
to the full image size) for each image segment. Visual words are obtained com-
puting a hierarchical K-means with K = 17 and three levels. The computation
of SIFT descriptors and signatures takes about 1 second per segment in a MAT-
LAB/C implementation. Constructing the vocabulary tree takes 40-50 minutes
for ten categories. Training time for MilBoost on four Caltech categories takes
about 1 day using 500 weak classifiers. Using ten categories of Landmarks-18
MilBoost take less than a day of training using 200 weak classifiers. Classi-
fication of all test images for ten categories is done in 0.5 seconds. All above
operations were performed on a Pentium 2.8 GHz.

5 Conclusions and Future Work

In this paper we proposed a novel framework for image categorization and lo-
calization of objects in real world scenes using weakly labeled data. Our perfor-
mance is highly competitive with current MIL-based and traditional approaches
for image and object categorization. We showed that multiple stable segmenta-
tions extracted suitable regions for the MIL problem, thus increasing perfor-
mance in categorization and permitting accurate localization capabilities. We
tested our framework on Caltech 4 and Landmarks-18 datasets, obtaining high
accuracy in object categorization tasks. As future work, we want to explore new
methods to scale our object categorization framework to a larger number of cat-
egories and handle multiple objects in the scene.
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